CD44, a major cell surface receptor for hyaluronan (HA), contains a functional domain responsible for HA binding at its N terminus (residues 21-178). Accumulating evidence indicates that proteolytic cleavage of CD44 in its extracellular region (residues 21-268) leads to enhanced tumor cell migration and invasion. Hence, understanding the mechanisms underlying the CD44 proteolytic cleavage is important for understanding the mechanism of CD44-mediated tumor progression. Here we present the NMR structure of the HA-binding domain of CD44 in its HA-bound state. The structure is composed of the Link module (residues 32-124) and an extended lobe (residues 21-31 and 125-152). Interestingly, a comparison of its unbound and HA-bound structures revealed that rearrangement of the beta-strands in the extended lobe (residues 143-148) and disorder of the structure in the following C-terminal region (residues 153-169) occurred upon HA binding, which is consistent with the results of trypsin proteolysis studies of the CD44 HA-binding domain. The order-to-disorder transition of the C-terminal region by HA binding may be involved in the CD44-mediated cell migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M608425200 | DOI Listing |
Molecules
January 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
NF-κB essential modulator (NEMO) is critically involved in the induction of interferons (IFNs) and pro-inflammatory cytokines. Hepatitis A virus (HAV) 3C protease was recently identified to cleave NEMO in non-hepatic cells. This study aimed at understanding efficiency and function of HAV 3C-mediated NEMO cleavage in hepatocytes.
View Article and Find Full Text PDFToxics
January 2025
School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
Hypertension is not merely a vascular disorder but a significant risk factor for neural impairment. Moreover, healthcare for the hypertensive population with environmental or occupational pollutants has become an issue of increasing concern in public health. As a traditional neurotoxic heavy metal, Pb exposure results in neuroinflammation as well as neurodegenerative diseases.
View Article and Find Full Text PDFCells
January 2025
Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany.
Neuroendocrine neoplasms (NENs) are a diverse group originating from endocrine cells/their precursors in pancreas, small intestine, or lung. The key serum marker is chromogranin A (CgA). While commonly elevated in patients with NEN, its prognostic value is still under discussion.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China. Electronic address:
Effects of enzymolysis by seven proteases (Alcalase, Bromelain, Flavourzyme, Papain, Pepsin, Protamex, and Trypsin) with distinct cleavage specificities on the emulsification performance of hempseed protein (HPI) and its correlation with the structural and interfacial characteristics were explored in this study. Upon enzymolysis, a remarkable decrease in α-helix and β-turn was observed in resultant hydrolysates (HPH), accompanied by a rise in β-sheet and random coil, notably by Alcalase, Bromelain, Papain, and Trypsin. Overall, proteolysis led to noticeable reductions in surface hydrophobicity and total sulfhydryls as well as a redshift in intrinsic fluorescence, with Papain showing the most pronounced effects, possibly due to its higher hydrolysis degree (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!