Analysis of hydroxyproline isomers and hydroxylysine by reversed-phase HPLC and mass spectrometry.

J Chromatogr B Analyt Technol Biomed Life Sci

Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.

Published: March 2007

AI Article Synopsis

  • Collagens are the most abundant proteins in mammals and contain a significant amount of specific hydroxylated amino acids, including various forms of hydroxyproline and hydroxylysine.
  • A new method using RPC-UV-ESI-MS allows for the simultaneous separation and analysis of all five hydroxyamino acids along with two hydroxyproline epimers after transforming them with a chemical derivative.
  • This technique has been successfully applied to different peptides containing hydroxyproline and collagen type I, demonstrating its versatility and effectiveness.

Article Abstract

Collagens, the most abundant mammalian proteins, contain a high content of hydroxylated amino acids, such as, 3- and 4-cis-/trans-hydroxyproline (Hyp) and 5-hydroxylysine (Hyl). Whereas the global content of 4-Hyp was studied by amino acid analysis, no technique to determine all five hydroxyamino acids simultaneously in collagens has been reported. Here, we report the separation of all five hydroxyamino acids as well as two Hyp epimers from all other proteinogenic amino acids after derivatization with N(2)-(5-fluoro-2,4-dinitrophenyl)-l-valine amide (l-FDVA) by RPC-UV-ESI-MS. The general applicability of this method is shown for three Hyp-containing peptides as well as collagen type I.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2006.10.015DOI Listing

Publication Analysis

Top Keywords

amino acids
8
hydroxyamino acids
8
analysis hydroxyproline
4
hydroxyproline isomers
4
isomers hydroxylysine
4
hydroxylysine reversed-phase
4
reversed-phase hplc
4
hplc mass
4
mass spectrometry
4
spectrometry collagens
4

Similar Publications

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL.

View Article and Find Full Text PDF

The metabolites gluconic acid, 5-ketogluconic acid, proline, and glutamic acid, produced by Pseudomonas reptilivora B-6bs, are industrially important, particularly in food and pharmaceutical sectors. However, producing these metabolites involves biotin supplementation to enhance yields, which is an expensive additive, and reducing its use can significantly lower production costs. Thus, This study aimed to enhance the production of gluconic acid, 5-ketogluconic acid, proline, and glutamic acid without biotin supplementation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.

Background: Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. A pathological hallmark of the disease is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking.

View Article and Find Full Text PDF

Background: Apolipoprotein E (ApoE) exists in three protein isoforms: E2, E3, and E4, which differ by only one or two amino acids. These slight differences profoundly effect protein structure and function, allowing each isoform to differentially impact Alzheimer's Disease (AD) risk. Relative to the most common E3 isoform, E4 dramatically increases risk, while E2 confers a substantial decrease in risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!