MvfR (PqsR), a Pseudomonas aeruginosa LysR-type transcriptional regulator, plays a critical role in the virulence of this pathogen. MvfR modulates the expression of multiple quorum sensing (QS)-regulated virulence factors; and the expression of the phnAB and pqsA-E genes that encode functions mediating 4-hydroxy-2-alkylquinolines (HAQs) signalling compounds biosynthesis, including 3,4-dihydroxy-2heptylquinoline (PQS) and its precursor 4-hydroxy-2-heptylquinoline (HHQ). PQS enhances the in vitro DNA-binding affinity of MvfR to the pqsA-E promoter, to suggest it might function as the in vivo MvfR ligand. Here we identify a novel MvfR ligand, as we show that HHQ binds to the MvfR ligand-binding-domain and potentiates MvfR binding to the pqsA-E promoter leading to transcriptional activation of pqsA-E genes. We show that HHQ is highly produced in vivo, where it is not fully converted into PQS, and demonstrate that it is required for MvfR-dependent gene expression and pathogenicity; PQS is fully dispensable, as pqsH-mutant cells, which produce HHI but completely lack PQS, display normal MvfR-dependent gene expression and virulence. Conversely, PQS is required for full production of pyocyanin. These results uncover a novel biological role for HHQ; and provide novel insights on MvfR activation that may aid in the development of therapies that prevent or treat P. aeruginosa infections in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2006.05462.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!