Cassava is a tropical crop and grown for its tuberous starchy roots. In Africa it is mainly cultivated by small-scale farmers who observe, select and name their cassava varieties based on morphology, food, social and economic interest. Here we have used an interdisciplinary approach involving farmer interviews, genetic markers and morphological descriptors to study the composition of cassava varieties on small-scale farms in 11 villages located in three districts in Uganda, the genetic structure within and between these varieties and their morphology. The composition of local, newly introduced and improved varieties differed widely between villages and districts. The Ugandan farmers in our study seemed to adopt improved varieties to a greater extent when there was a nearby market, prevalence of disease epidemics and good extension service. We found considerable genetic variation both within and between cassava varieties though the variation was larger between varieties. However, most local and improved varieties showed predominating genotypes at many loci. Accessions of commonly grown varieties meeting farmers' preferences could therefore be selected and implemented in future breeding programmes involving development, dissemination and adoption. The like-named varieties in different villages were genetically similar, demonstrating farmers' ability to differentiate and maintain the same variety over large areas. However, some varieties with different names in different villages showed both genetic and morphological similarity, suggesting that farmers may rename plants when they are introduced into their fields. The large differences found in variety and genetic composition between villages and districts in Uganda may be a result of the diverse needs and growing conditions characteristic for traditional farming system. This suggests that efforts to conserve and increase the genetic diversity in farmers' fields will require policies tailored to each area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-006-9107-4 | DOI Listing |
Crop Prot
January 2025
International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania, Box 34441, Dar es Salaam, Tanzania.
Formal systems supporting the delivery of high-quality cassava seed are being established in several key cassava producing countries in Africa. Questions remain, however, about the value of certified cassava seed when compared to seed which is recycled multiple times, which is standard farmer practice. A study was therefore conducted to compare fresh cassava root yields of high-quality seed (HQS) versus farmer-saved (recycled) seed (FSS) for three widely grown improved cassava varieties in Tanzania namely: , and .
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
Centuries of clonal propagation in cassava (Manihot esculenta) have reduced sexual recombination, leading to the accumulation of deleterious mutations. This has resulted in both inbreeding depression affecting yield and a significant decrease in reproductive performance, creating hurdles for contemporary breeding programs. Cassava is a member of the Euphorbiaceae family, including notable species such as rubber tree (Hevea brasiliensis) and poinsettia (Euphorbia pulcherrima).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi 214122, China. Electronic address:
Cassava cell flour can expand the food industrial availability of cassava resources. In this study, cassava cells were isolated from eight cassava varieties to analyze the composition, structure, and physicochemical properties. The smaller particle size in CS4 led to the lowest swelling power and viscosity, which further reduced the modulus (G', G") and shear stress of the cassava cell gel.
View Article and Find Full Text PDFPlants (Basel)
November 2024
School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!