The objective of this work was to characterize the adaptation of cardiac metabolism to a lipid overload in a model of diet-induced obesity (DIO) in mice. After 8 wk dietary treatment, mice receiving a high-fat diet exhibited an increase in the amount of adipose tissue, accompanied by a surge in plasma leptin concentration (from 5.4-16.0 ng/ml). This was associated with: 1) an induction of uncoupling protein-2 (120%), 2) an increase in the phosphorylated form of AMP-activated protein kinase (120%), and 3) a reduction in lactate concentration and lactate dehydrogenase activity in myocardial tissue (40%). Because DIO induces leptin resistance, we analyzed leptin receptor functionality by measuring phospho-signal transducer and activator of transcription 3 in response to acute leptin (1 mg/kg). We observed that leptin receptor signaling remained unaltered within the heart but was fully impaired within the hypothalamus. Taken together, these data show that during DIO development, there is a metabolic shift in the heart aimed at increasing fatty acid oxidation to the detriment of carbohydrates. This effect seems to be leptin-dependent, suggesting that the increased adiposity observed during the onset of obesity might contribute to impairing ectopic lipidic deposition in the heart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2006-0914 | DOI Listing |
World J Oncol
February 2025
Department of Cell Biology and Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.
View Article and Find Full Text PDFToxicol Lett
January 2025
China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 100061, PR China.
The prevalence of obesity-associated kidney injury has increased, yet the precise extent of the injury and its underlying mechanisms remain unclear. This study used a Sprague-Dawley (SD) rat model to simulate human exposure scenarios, with the objective of investigating the involvement of mitochondria in obesity-induced renal toxicity. Biochemical analysis revealed significant increases in serum creatinine, cystatin C, urinary protein, urinary microalbumin, and urinary α1-microglobulin levels in rats fed a high-fat diet, indicating a notable decline in glomerular filtration function.
View Article and Find Full Text PDFGenes (Basel)
November 2024
The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.
Background: Larvae development is a critical step in aquaculture, yet the development of immune and stress responses during this early phase of life is not well understood. Snapper is a species that has been selected as a candidate for aquaculture in New Zealand.
Methods: In this study we explore a set of 18 genes identified as potentially being involved in the stress and immune responses of snapper larvae during the first 30 days of development.
J Nutr Sci Vitaminol (Tokyo)
January 2025
Key Laboratory of Sichuan Cuisine Artificial Intelligence, Sichuan Tourism University.
This study aimed to investigate the regulatory effects of raspberry ketone on hypothalamic inflammation and its mechanism. Mouse microglia cells (BV2 cells) were cultured in vitro with palmitic acid (100 μM) to induce inflammation model and then incubated with raspberry ketone (5, 20, 50 μM) alone or raspberry ketone (50 μM) and the specific inhibitor of uncoupling protein 2 (UCP2), genipin (10 μM), to test the role of UCP2 in raspberry ketone regulatory of inflammation. Meanwhile, C57BL/6J mice were fed a high-fat diet containing raspberry ketone (0.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiovascular Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi Province 030032, China.
This research is aimed at unravelling the intricate relationship between transient receptor potential vanilloid 6 (TRPV6), protein kinase A (PKA), uncoupling protein 2 (UCP2), and atherosclerosis. By shedding light on the role of the TRPV6/PKA/UCP2 pathway in inhibiting inflammatory response and cell apoptosis in coronary atherosclerotic plaques, this study provides valuable insights into potential therapeutic targets for treating coronary artery disease (CAD). We established animal and cell models of atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!