Asf1, a loveseat for a histone couple.

Cell

Department of Carcinogenesis, Science Park Research Division, M.D. Anderson Cancer Center, Smithville, TX 78957, USA.

Published: November 2006

In this issue of Cell, English et al. present the first crystal structure of a histone chaperone (Asf1) bound to histones (the H3/H4 heterodimer). The structure provides insights into how histone chaperones participate in nucleosome disassembly. It reveals that Asf1 physically blocks (H3/H4)(2) tetramer formation and that the C terminus of H4 undergoes a dramatic conformational change upon binding to Asf1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2006.10.021DOI Listing

Publication Analysis

Top Keywords

asf1
4
asf1 loveseat
4
loveseat histone
4
histone couple
4
couple issue
4
issue cell
4
cell english
4
english crystal
4
crystal structure
4
structure histone
4

Similar Publications

Higher isoform of hnRNPA1 confer Temozolomide resistance in U87MG & LN229 glioma cells.

J Neurooncol

January 2025

Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India.

Background: Gliblastoma is a malignant brain tumor; despite available treatment modalities, the tumor reoccurrence rate persist in the currently prescribed Temozolomide chemotherapy. Study aimed to study the inquisitive role of RNA binding splice factor protein hnRNPA1 in promoting glioma resistance against Temozolomide drug and therapeutic insights.

Methods: In this study two non-expressing O-methylguanine-DNA methyltransferase (MGMT) glioma cell lines U87MG & LN229.

View Article and Find Full Text PDF
Article Synopsis
  • - The accumulation of single-stranded DNA (ssDNA) gaps at replication forks may influence how sensitive certain tumors are to chemotherapy, particularly those deficient in homologous recombination (HR), since these ssDNA gaps can turn into harmful double-stranded DNA breaks.
  • - The study highlights the crucial role of the histone chaperone CAF-1, not just in maintaining stalled replication forks, but also in promoting ssDNA gap formation via its interaction with PrimPol, an enzyme that aids in managing replication stress.
  • - Findings suggest that the loss of CAF-1 or ASF1A in HR-deficient cells leads to increased chemoresistance due to a reduction in ssDNA gaps, pointing to a novel function of CAF-
View Article and Find Full Text PDF

Genome stability is significantly influenced by the precise coordination of chromatin complexes that facilitate the loading and eviction of histones from chromatin during replication, transcription, and DNA repair processes. In this study, we investigate the role of the Arabidopsis H3 histone chaperones ANTI-SILENCING FUNCTION 1 (ASF1) and HISTONE REGULATOR A (HIRA) in the maintenance of telomeres and 45S rDNA loci, genomic sites that are particularly susceptible to changes in the chromatin structure. We find that both ASF1 and HIRA are essential for telomere length regulation, as telomeres are significantly shorter in asf1a1b and hira mutants.

View Article and Find Full Text PDF

African swine fever (ASF) is one of the deadliest swine diseases, causing significant economic losses, threatening food security, and limiting pig production in affected countries. In the absence of an effective ASF vaccine, prevention and control of ASF depend mainly on effective biosecurity measures. In this study, the efficacy of SAFER, a powdered disinfectant containing clay, an acid complex, and the active ingredient thyme essential oil, was tested against the ASF virus.

View Article and Find Full Text PDF

Mechanism of ASF1 Inhibition by CDAN1.

bioRxiv

August 2024

Department of Cell Biology, Harvard Medical School, Boston, MA 02115.

Codanin-1 (CDAN1) is an essential and ubiquitous protein named after congenital dyserythropoietic anemia type I (CDA-I), an autosomal recessive disease that manifests from mutations in the or (CDAN1 interacting nuclease 1) gene. CDAN1 interacts with CDIN1 and the paralogous histone H3-H4 chaperones ASF1A (Anti-Silencing Function 1A) and ASF1B, but its function remains unclear. Here, we biochemically and structurally analyze CDAN1 complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!