Epstein-Barr virus (EBV) BMRF-2 protein interaction with the beta1 family of integrins plays an important role in EBV infection of polarized oral epithelial cells. In this work, we characterized BMRF-2 protein expression in EBV-infected B lymphoblastoid and polarized oral epithelial cells, and in hairy leukoplakia (HL) epithelium. BMRF-2 expression in B cells and polarized oral epithelial cells was associated with the EBV lytic infection. In these cells, BMRF-2 is efficiently transported to the cell membrane and its integrin binding Arg-Gly-Asp (RGD) motif is exposed on the cell surface. BMRF-2 is highly expressed in HL epithelium and accumulates at the lateral border of oral keratinocytes. In EBV-infected polarized oral epithelial cells, this protein is transported to the basolateral membranes and co-localized with beta1 integrin. These data suggest that BMRF-2 may play an important role in cell-to-cell spread of EBV within the oral epithelium. BMRF-2 is glycosylated through O-linked oligosaccharides; it forms oligomers and is associated with the virion envelope. Its C-terminal tail is localized in the cytoplasm. We found that beta1, alpha5, and alpha3 integrins are present in purified EBV virions. We show that BMRF-2 is a ligand for beta1, alpha5, alpha3, and alphav integrins and our data are consistent with a role for BMRF-2 in viral lytic infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2006.09.047DOI Listing

Publication Analysis

Top Keywords

polarized oral
16
oral epithelial
16
epithelial cells
16
bmrf-2
10
epstein-barr virus
8
bmrf-2 protein
8
epithelium bmrf-2
8
lytic infection
8
beta1 alpha5
8
alpha5 alpha3
8

Similar Publications

Piezoelectric Vitamin-Based Self-Assemblies for Energy Generation.

Adv Mater

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.

Structural diversity of biomolecules leads to various supramolecular organizations and asymmetric architectures of self-assemblies with significant piezoelectric response. However, the piezoelectricity of biomolecular self-assemblies has not been fully explored and the relationship between supramolecular structures and piezoelectricity remains poorly understood, which hinders the development of piezoelectric biomaterials. Herein, for the first time, the piezoelectricity of vitamin-based self-assemblies for power generation is systematically explored.

View Article and Find Full Text PDF

Endothelial cells under disturbed flow release extracellular vesicles to promote inflammatory polarization of macrophages and accelerate atherosclerosis.

BMC Biol

January 2025

Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.

Background: Extracellular vesicles (EVs) derived from endothelial cells (ECs) are increasingly recognized for their role in the initiation and progression of atherosclerosis. ECs experience varying degrees and types of blood flow depending on their specific arterial locations. In regions of disturbed flow, which are predominant sites for atherosclerotic plaque formation, the impact of disturbed flow on the secretion and function of ECs-derived EVs remains unclear.

View Article and Find Full Text PDF

Nonylphenol exposure increases the risk of Hirschsprung's disease by inducing macrophage M1 polarization.

Ecotoxicol Environ Saf

January 2025

Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China. Electronic address:

Nonylphenol (NP), a ubiquitous environmental contaminant used as a surfactant in industrial production and classified as an endocrine disruptor, could interfere hormone secretion and exhibit neurotoxicity in organisms. Hirschsprung's disease (HSCR), one of the most frequently observed congenital malformations of the digestive system, arises mainly due to the failure of enteric neural crest cells to migrate to the distal colon during embryonic development. However, the effects of NP exposure on HSCR are largely unknown.

View Article and Find Full Text PDF

Due to the inherent aseptic and enclosed characteristics of joint cavity, septic arthritis (SA) almost inevitably leads to intractable infections and rapidly progressing complex pathological environments. Presently, SA faces not only the deficient effectiveness of the gold-standard systemic antibiotic therapy but also the scarcity of effective localized targeted approaches and standardized animal models. Herein, an ingenious multifunctional nanosystem is designed, which involves the methylation of hyaluronic acid (HA), copolymerization with DEGDA, loading with vancomycin (VAN), and then coating with fused macrophage-platelet membrane (denoted as FM@HA@VAN).

View Article and Find Full Text PDF

Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit.

Sci China Life Sci

January 2025

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.

Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!