Processing of VSVG protein is not a rate-limiting step for its efflux from the Golgi complex.

Biochem Biophys Res Commun

Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.

Published: December 2006

The secretory membrane system is comprised of membrane-bound organelles defined by specific sets of proteins that function in sequential modification of cargo proteins and lipids. This processing of cargo proteins and lipids is coupled to their secretory transport. Here, we investigated the effect of inhibiting N-glycan processing by swainsonine, an inhibitor of Golgi alpha1,2-mannosidase-II, on secretory transport of the thermo-reversible tsO45 mutant of vesicular stomatitis virus glycoprotein tagged with green fluorescent protein (VSVG-FP). Quantitative analysis using kinetic modeling combined with live cell imaging was used to derive the rate coefficients that delineate secretory transport of VSVG-FP. We found that neither inhibition of N-glycan processing nor elimination by mutagenesis of the first of the two asparagine-linked glycans had any significant effect on the rate of VSVG-FP transport through the Golgi. These data suggest that at least for VSVG, the multi-enzymatic process of N-glycan modification does not comprise a rate-limiting step for its Golgi efflux.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.10.084DOI Listing

Publication Analysis

Top Keywords

secretory transport
12
rate-limiting step
8
cargo proteins
8
proteins lipids
8
n-glycan processing
8
processing
4
processing vsvg
4
vsvg protein
4
protein rate-limiting
4
step efflux
4

Similar Publications

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Oral Tributyrin Treatment affects Short-Chain Fatty Acid Transport, Mucosal Health, and Microbiome in a Mouse Model of Inflammatory Diarrhea.

J Nutr Biochem

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:

Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

The Exocyst Subunits EqSec5 and EqSec6 Promote Powdery Mildew Fungus Growth and Pathogenicity.

J Fungi (Basel)

January 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China.

The exocyst complex in eukaryotic cells modulates secretory vesicle transportation to promote exocytosis. The exocyst is also required for the hyphal growth and pathogenic development of several filamentous phytopathogens. Obligate biotrophic powdery mildew fungi cause considerable damage to many cash crops; however, the exocyst's roles in this group of fungi is not well studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!