Incorporating genome-scale tools for studying energy homeostasis.

Nutr Metab (Lond)

Agrivida, Inc,, Cambridge, MA, USA.

Published: November 2006

Mammals have evolved complex regulatory systems that enable them to maintain energy homeostasis despite constant environmental challenges that limit the availability of energy inputs and their composition. Biological control relies upon intricate systems composed of multiple organs and specialized cell types that regulate energy up-take, storage, and expenditure. Because these systems simultaneously perform diverse functions and are highly integrated, they are extremely difficult to understand in terms of their individual component contributions to energy homeostasis. In order to provide improved treatments and clinical options, it is important to identify the principle genetic and molecular components, as well as the systemic features of regulation. To begin, many of these features can be discovered by integrating experimental technologies with advanced methods of analysis. This review focuses on the analysis of transcriptional data derived from microarrays and how it can complement other experimental techniques to study energy homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636640PMC
http://dx.doi.org/10.1186/1743-7075-3-40DOI Listing

Publication Analysis

Top Keywords

energy homeostasis
16
energy
6
incorporating genome-scale
4
genome-scale tools
4
tools studying
4
studying energy
4
homeostasis
4
homeostasis mammals
4
mammals evolved
4
evolved complex
4

Similar Publications

Creatine (Cr) is recognized for its role in enhancing cognitive functions through the phosphocreatine (pCr)-creatine kinase system involved in brain energy homeostasis. It is reversibly converted into pCr by creatine kinase (CK). A brain-specific isoform of CK, known as CK-BB, is implicated in the brain's energy metabolism.

View Article and Find Full Text PDF

A free calcium ion in the cytosol is essential for many physiological and physical functions. Also, it is known as a second messenger as the quantity of free calcium ions is an essential part of brain signaling. In this work, we have attempted to study calcium signaling in the presence of mitochondria, buffer, and endoplasmic reticulum fluxes.

View Article and Find Full Text PDF

Lower Bone Mineral Density in Female Elite Athletes With Menstrual Dysfunction From Mixed Sports.

Transl Sports Med

January 2025

Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital, Bispebjerg-Frederiksberg, Copenhagen, Denmark.

Menstrual dysfunction (MD) in female athletes might be indicative of the syndrome of relative energy deficiency in sports (REDs), associated with, e.g., impaired bone health, an increased risk of injury, and decreased performance.

View Article and Find Full Text PDF

GDF15 inhibits early-stage adipocyte differentiation by enhancing HOP2 expression and suppressing C/EBPα expression.

Mol Cell Endocrinol

January 2025

Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. Electronic address:

Excessive adipocyte differentiation and accumulation contribute to the development of metabolic disorders. Growth differentiation factor 15 (GDF15) plays an essential role in energy homeostasis and is considered an anti-obesity factor; however, elevated serum levels of endogenous GDF15 have been reported in certain individuals with obesity. In this study, to gain a better understanding of this complex relationship between GDF15 levels and obesity, we investigated GDF15 expression and function during adipogenesis.

View Article and Find Full Text PDF

regulates melanocortin 4 receptor transcription and energy homeostasis.

Sci Transl Med

January 2025

Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX, 75390, USA.

Disruption of hypothalamic melanocortin 4 receptors (MC4Rs) causes obesity in mice and humans. Here, we investigated the transcriptional regulation of in the hypothalamus. In mice, we show that the homeodomain transcription factor Orthopedia (OTP) is enriched in MC4R neurons in the paraventricular nucleus (PVN) of the hypothalamus and directly regulates transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!