Background: Deregulated expression of oncogenes such as MYC and PAX3-FKHR often occurs in rhabdomyosarcomas. MYC can enhance cell proliferation and apoptosis under specific conditions, whereas PAX3-FKHR has only been described as anti-apoptotic.
Results: In order to evaluate how MYC and PAX3-FKHR oncogenes influenced p53-mediated apoptosis, rhabdomyosarcoma cells were developed to independently express MYC and PAX3-FKHR cDNAs. Exogenous wild-type p53 expression in MYC transfected cells resulted in apoptosis, whereas there was only a slight effect in those transfected with PAX3-FKHR. Both oncoproteins induced BAX, but BAX induction alone without expression of wild-type p53 was insufficient to induce apoptosis. Data generated from genetically modified MEFs suggested that expression of all three proteins; MYC, BAX and p53, was required for maximal cell death to occur.
Conclusion: We conclude that cooperation between p53 and oncoproteins to induce apoptosis is dependent upon the specific oncoprotein expressed and that oncogene-mediated induction of BAX is necessary but insufficient to enhance p53-mediated apoptosis. These data demonstrate a novel relationship between MYC and p53-dependent apoptosis, independent of the ability of MYC to induce p53 that may be important in transformed cells other than rhabdomyosarcoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635425 | PMC |
http://dx.doi.org/10.1186/1476-4598-5-53 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!