The capacity of plants to tolerate high levels of salinity depends on the ability to exclude salt from the shoot, or to tolerate high concentrations of salt in the leaf (tissue tolerance). It is widely held that a major component of tissue tolerance is the capacity to compartmentalize salt into safe storage places such as vacuoles. This mechanism would avoid toxic effects of salt on photosynthesis and other key metabolic processes. To test this, the relationship between photosynthetic capacity and the cellular and subcellular distribution of Na+, K+ and Cl- was studied in salt-sensitive durum wheat (cv. Wollaroi) and salt-tolerant barley (cv. Franklin) seedlings grown in a range of salinity treatments. Photosynthetic capacity parameters (Vcmax, Jmax) of salt-stressed Wollaroi decreased at a lower leaf Na+ concentration than in Franklin. Vacuolar concentrations of Na+, K+ and Cl- in mesophyll and epidermal cells were measured using cryo-scanning electron microscopy (SEM) X-ray microanalysis. In both species, the vacuolar Na+ concentration was similar in mesophyll and epidermal cells, whereas K+ was at higher concentrations in the mesophyll, and Cl- higher in the epidermis. The calculated cytoplasmic Na+ concentration increased to higher concentrations with increasing bulk leaf Na+ concentration in Wollaroi compared to Franklin. Vacuolar K+ concentration was lower in the epidermal cells of Franklin than Wollaroi, resulting in higher cytoplasmic K+ concentrations and a higher K+ : Na+ ratio. This study indicated that the maintenance of photosynthetic capacity (and the resulting greater salt tolerance) at higher leaf Na+ levels of barley compared to durum wheat was associated with the maintenance of higher K+, lower Na+ and the resulting higher K+ : Na+ in the cytoplasm of mesophyll cells of barley.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3040.2006.01592.x | DOI Listing |
Physiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Universidad de Talca, Talca, Chile.
Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Salt stress is a vital environmental stress that severely limits plant growth and productivity. Prohexadione-calcium (Pro-Ca) has been extensively studied to regulate plant growth, development, and stress responses. However, the constructive role of Pro-Ca in alleviating damages and enhancing rice tillers' morph-physiological characteristics under salt stress remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!