Janus kinase 3 (JAK3) mediates signal transduction from cytokine receptors using the common gamma chain. The rationally designed inhibitor of JAK3, CP-690,550, prevents acute allograft rejection in rodents and in nonhuman primates. Here we investigated the ability of CP-690,550, to prevent allograft vasculopathy in a rodent model of aorta transplantation. Aortas from AxC Irish (RT1(a)) or Lewis (RT1(l)) rats were heterotopically transplanted into the infra-renal aorta of Lewis recipients and harvested at 28 or 56 days. Treated recipients received CP-690,550 by osmotic pumps (mean drug exposure of 110 +/- 38 ng/ml). Significant intimal hyperplasia was demonstrated in untreated allografts when compared with isografts at 28 days (2.08 +/- 0.85% vs. 0.43 +/- 0.2% luminal obliteration, respectively, P = 0.001) and 56 days (5.3 +/- 2.4% vs. 0.38 +/- 0.3%, P = 0.002). Treatment caused a 51% reduction in intimal hyperplasia at day 56. CP-690,550-treated animals also had a significant reduction of donor-specific IgG production and of the gene expression for suppressor of cytokine signaling-3 and with unchanged levels of expression of RANTES, IP-10 and transforming growth factor-beta1. These results are the first to show that JAK3 blockade by CP-690,550 effectively prevents allograft vasculopathy in this rat model of aorta transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-2277.2006.00387.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!