Cyclisation of N-terminal glutamine and/or glutamate to yield pyroglutamate is an essential posttranslational event affecting a plethora of bioactive peptides and proteins. It is directly linked with pathologies ranging from neurodegenerative diseases to inflammation and several types of cancers. The reaction is catalysed by ubiquitous glutaminyl cyclotransferases (QCs), which present two distinct prototypes. Mammalian QCs are zinc-dependent enzymes with an alpha/beta-hydrolase fold. Here we present the 1.6-A-resolution structure of the other prototype, the plant analogue from Carica papaya (PQC). The hatbox-shaped molecule consists of an unusual five-fold beta-propeller traversed by a central channel, a topology that has hitherto been described only for some sugar-binding proteins and an extracellular nucleotidase. The high resistance of the enzyme to denaturation and proteolytic degradation is explained by its architecture, which is uniquely stabilised by a series of tethering elements that confer rigidity. Strikingly, the N-terminus of PQC specifically interacts with residues around the entrance to the central channel of a symmetry-related molecule, suggesting that this location is the putative active site. Cyclisation would follow a novel general-acid/base working mechanism, pivoting around a strictly conserved glutamate. This study provides a lead structure not only for plant QC orthologues, but also for bacteria, including potential human pathogens causing diphtheria, plague and malaria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/BC.2006.185 | DOI Listing |
Sci Rep
July 2015
Proteolysis Lab; Department of Structural Biology ("María de Maeztu" Unit of Excellence); Molecular Biology Institute of Barcelona, CSIC; Barcelona Science Park, Helix Building; c/Baldiri Reixac, 15-21; E-08028 Barcelona Spain.
Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer's disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms.
View Article and Find Full Text PDFBiol Chem
December 2006
Institut de Biologia Molecular de Barcelona, C.S.I.C., c/ Jordi Girona, 18-26, E-08034 Barcelona, Spain.
Cyclisation of N-terminal glutamine and/or glutamate to yield pyroglutamate is an essential posttranslational event affecting a plethora of bioactive peptides and proteins. It is directly linked with pathologies ranging from neurodegenerative diseases to inflammation and several types of cancers. The reaction is catalysed by ubiquitous glutaminyl cyclotransferases (QCs), which present two distinct prototypes.
View Article and Find Full Text PDFNat Struct Biol
November 2003
School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
Many bacteria and about 40,000 plant species form primary carbohydrate reserves based on fructan; these polymers of beta-D-fructofuranose are thought to confer tolerance to drought and frost in plants. Microbial fructan, the beta(2,6)-linked levan, is synthesized directly from sucrose by levansucrase, which is able to catalyze both sucrose hydrolysis and levan polymerization. The crystal structure of Bacillus subtilis levansucrase, determined to a resolution of 1.
View Article and Find Full Text PDFBiochem Cell Biol
November 2002
Department of Medicine, Indiana University School of Medicine and the Department of Veterans Affairs, Indianapolis 46202, USA.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is present in plasma as an apolipoprotein and as a cell-associated lipase. GPI-PLD mRNA levels are regulated, but it is unclear if posttranslational mechanisms also regulate GPI-PLD function. We examined the effect of protein kinase A phosphorylation on human serum GPI-PLD activity, trypsin activation, and apolipoprotein AI binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!