Synthesis of structurally diverse bis-peptide oligomers.

J Org Chem

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

Published: November 2006

We have developed second-generation monomers 1 and 2 and improved conditions for rapidly and simultaneously closing multiple diketopiperazines on solid support. These new conditions involve either the microwave heating of a suspension of solid-supported amino-tetrafluoropropyl esters in acetic acid/triethylamine catalyst solution or continuous flow of catalyst solution through the resin, heated in a flow cell apparatus. We demonstrate that the new monomers 1 and 2 can be combined with the new conditions easily to synthesize previously inaccessible hetero and homo spiro ladder oligomers 3 and 4 and others.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0609125DOI Listing

Publication Analysis

Top Keywords

catalyst solution
8
synthesis structurally
4
structurally diverse
4
diverse bis-peptide
4
bis-peptide oligomers
4
oligomers developed
4
developed second-generation
4
second-generation monomers
4
monomers improved
4
improved conditions
4

Similar Publications

Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ.

View Article and Find Full Text PDF

We report the synthesis, characterization, and catalytic applications of N,N'-diaryl diazabutadiene (DAB) Ni(0) complexes stabilized by alkene ligands. These complexes are soluble and stable in several organic solvents, making them ideal candidates for in situ catalyst formation during high-throughput experimentation (HTE). We used HTE to evaluate these Ni(0) precatalysts in a variety of Suzuki and C-N coupling reactions, and they were found to have equal or better performance than the still-standard Ni(0) source, Ni(COD)2.

View Article and Find Full Text PDF

Sprayed Aqueous Microdroplets for Spontaneous Synthesis of Functional Microgels.

Angew Chem Int Ed Engl

January 2025

DWI at RWTH Aachen, Macromolecular Chemistry, Pauwelsstrasse 8, 52056, Aachen, GERMANY.

The development of sustainable synthesis route to produce functional and bioactive polymer colloids has attracted much attention. Most strategies are based on the polymerization of monomers or crosslinking of prepolymers by enzyme- or cell-mediated reactions or specific catalysts in confined emulsions. Herein, a facile solution spray method was developed for spontaneous synthesis of microgels without use of confined emulsion, additional initiators/catalysts and deoxygenation, which addresses the challenges in traditional microgel synthesis.

View Article and Find Full Text PDF

The presence of trace CO impurity gas in hydrogen fuel can rapidly deactivate platinum-based hydrogen oxidation reaction (HOR) catalysts due to poisoning effects, yet the precise CO tolerance mechanism remains debated. Our designed Au@PtX bifunctional core-shell nanocatalysts exhibit excellent performance of CO tolerance in acidic solution during HOR and possess exceptional Raman spectroscopy enhancement. Through capturing and analyzing in situ Raman spectroscopy evidences on *OH, metal-O species and *CO evolution under 0.

View Article and Find Full Text PDF

Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!