In this paper we describe a GPU-based technique for creating illustrative visualization through interactive manipulation of volumetric models. It is partly inspired by medical illustrations, where it is common to depict cuts and deformation in order to provide a better understanding of anatomical and biological structures or surgical processes, and partly motivated by the need for a real-time solution that supports the specification and visualization of such illustrative manipulation. We propose two new feature-aligned techniques, namely surface alignment and segment alignment, and compare them with the axis-aligned techniques which was reported in previous work on volume manipulation. We also present a mechanism for defining features using texture volumes, and methods for computing correct normals for the deformed volume in respect to different alignments. We describe a GPU-based implementation to achieve real-time performance of the techniques and a collection of manipulation operators including peelers, retractors, pliers and dilators which are adaptations of the metaphors and tools used in surgical procedures and medical illustrations. Our approach is directly applicable in medical and biological illustration, and we demonstrate how it works as an interactive tool for focus+context visualization, as well as a generic technique for volume graphics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2006.144 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry , University of California, Berkeley, California 94720, United States.
ConspectusColloidal nanocrystals are an interesting platform for studying the surface chemistry of materials due to their high surface area/volume ratios, which results in a large fraction of surface atoms. As synthesized, the surfaces of many colloidal nanocrystals are capped by organic ligands that help control their size and shape. While these organic ligands are necessary in synthesis, it is often desirable to replace them with other molecules to enhance their properties or to integrate them into devices.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
Deep brain stimulation (DBS) using electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine is under consideration to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain.
View Article and Find Full Text PDFGlia
January 2025
Burke Neurological Institute, White Plains, New York, USA.
Manipulating wound healing-associated signaling after SCI presents a promising avenue for increasing the recovery of function after injury. This study explores the potential of targeting molecular regulators of wound healing, initially identified in nonneural tissues, to enhance outcomes after SCI. Astrocytes, pivotal in central nervous system wound healing, play a crucial role in tissue remodeling and recovery.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Research Institute, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China.
Using transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) to investigate the occurrence and related causes of iatrogenic atrial septal defect (iASD) after catheter ablation combined with left atrial appendage closure (LAAC) for atrial fibrillation (AF) and its impact on the right heart system. We retrospectively analyzed 330 patients that underwent combined procedure of catheter ablation for AF and LAAC at General Hospital of Northern Theater Command from January 2018 to March 2022. These patients were divided into iASD group and non-iASD group according to whether there was persistent iASD shown on TEE at 3 months after procedure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!