Evolutionary predictions should be based on individual-level traits.

Am Nat

Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands.

Published: November 2006

Recent theoretical studies have analyzed the evolution of habitat specialization using either the logistic or the Ricker equation. These studies have implemented evolutionary change directly in population-level parameters such as habitat-specific intrinsic growth rates r or carrying capacities K. This approach is a shortcut to a more detailed analysis where evolutionary change is studied in underlying morphological, physiological, or behavioral traits at the level of the individual that contribute to r or K. Here we describe two pitfalls that can occur when such a shortcut is employed. First, population-level parameters that appear as independent variables in a population dynamical model might not be independent when derived from processes at the individual level. Second, patterns of covariation between individual-level traits are usually not conserved when mapped to the level of demographic parameters. Nonlinear mappings constrain the curvature of trade-offs that can sensibly be assumed at the population level. To illustrate these results, we derive a two-habitat version of the logistic and Ricker equations from individual-level processes and compare the evolutionary dynamics of habitat-specific carrying capacities with those of underlying individual-level traits contributing to the carrying capacities. Finally, we sketch how our viewpoint affects the results of earlier studies.

Download full-text PDF

Source
http://dx.doi.org/10.1086/508618DOI Listing

Publication Analysis

Top Keywords

individual-level traits
12
carrying capacities
12
logistic ricker
8
evolutionary change
8
population-level parameters
8
evolutionary
4
evolutionary predictions
4
predictions based
4
individual-level
4
based individual-level
4

Similar Publications

Scaling up to understand disease risk: distinct roles of host functional traits in shaping infection risk of avian malaria across different scales.

Proc Biol Sci

January 2025

MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.

Understanding the impacts of diversity on pathogen transmission is essential for public health and biological conservation. However, how the outcome and mechanisms of the diversity-disease relationship vary across biological scales in natural systems remains elusive. In addition, although the role of host functional traits has long been established in disease ecology, its integration into the diversity-disease relationship largely falls behind.

View Article and Find Full Text PDF

Unlabelled: Evolution of cooperation is a major, extensively studied problem in evolutionary biology. Cooperation is beneficial for a population as a whole but costly for the bearers of social traits such that cheaters enjoy a selective advantage over cooperators. Here we focus on coevolution of cooperators and cheaters in a multi-level selection framework, by modeling competition among groups composed of cooperators and cheaters.

View Article and Find Full Text PDF

Polygenic prediction of complex trait phenotypes has become important in human genetics, especially in the context of precision medicine. Recently, mr.mash, a flexible and computationally efficient method that models multiple phenotypes jointly and leverages sharing of effects across such phenotypes to improve prediction accuracy, was introduced.

View Article and Find Full Text PDF

Artificial light at night (ALAN) has emerged as a significant ecological disruptor, affecting various behavioral and physiological processes in numerous species. This study investigated the impact of ALAN on the risk-related behaviors and activity patterns of the ground-dwelling isopod, Porcellionides pruinosus. Isopods were exposed to three different illuminance conditions (<0.

View Article and Find Full Text PDF

Genetic, natal and spatial drivers of social phenotypes in wild great tits.

J Anim Ecol

December 2024

Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK.

In social animals, group dynamics profoundly influence collective behaviours, vital in processes like information sharing and predator vigilance. Disentangling the causes of individual-level variation in social behaviours is crucial for understanding the evolution of sociality. This requires the estimation of the genetic and environmental basis of these behaviours, which is challenging in uncontrolled wild populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!