Liposomal formulations of prilocaine, lidocaine and mepivacaine prolong analgesic duration.

Can J Anaesth

Department of Biochemistry, Institute of Biology, State University of Campinas, UNICAMP, C P 6109, Campinas, São Paulo, Brazil.

Published: November 2006

Purpose: A laboratory investigation was undertaken to compare the in vivo antinociceptive effects of 2% liposomal formulations of prilocaine (PLC), lidocaine (LDC) and mepivacaine (MVC) compared to plain solutions of each of these three local anesthetics.

Methods: Large unilamellar vesicles were prepared by extrusion (400 nm), at pH 7.4. The membrane/water partition coefficients were obtained from encapsulation efficiency values, after incorporation of each local anesthetic to the vesicles. The anesthetic effect of each liposomal formulation was compared to the respective local anesthetic solution in water, using the infraorbital nerve-blockade test, in rats.

Results: The partition coefficients were: 57 for PLC, 114 for LDC and 93 for MVC. In vivo results showed that local anesthetic-free liposomes, used as control, had no analgesic effect. In contrast, the encapsulated formulations induced increased intensities of total anesthetic effect (35.3%, 26.1% and 57.1%) and time for recovery (percentage increases of 30%, 23.1% and 56%), respectively, for PLC, LDC and MVC when compared to the plain solutions (P < 0.01).

Conclusions: These results indicate that liposomes provide effective drug-delivery systems for intermediate-duration local anesthetics. Mepivacaine was affected to the greatest extent, while LDC benefited least from liposome encapsulation, possibly due to greater vasodilatory properties of LDC.

Download full-text PDF

Source

Publication Analysis

Top Keywords

liposomal formulations
8
formulations prilocaine
8
mvc compared
8
compared plain
8
plain solutions
8
partition coefficients
8
local anesthetic
8
ldc mvc
8
ldc
5
local
5

Similar Publications

Characterization of insulin and bile acid complexes in liposome by different mass spectrometry techniques.

Anal Bioanal Chem

January 2025

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.

View Article and Find Full Text PDF

Breast cancer continues to pose a significant global health challenge, with conventional therapies frequently hindered by resistance mechanisms and undesirable side effects. This review investigates the therapeutic potential of polyphenols-naturally occurring compounds recognized for their antioxidant, anti-inflammatory, and anti-cancer properties-as alternative or complementary treatments for breast cancer. We examine the molecular pathways through which polyphenols exert their effects, including their influence on oxidative stress modulation, inflammatory responses, cellular proliferation, apoptosis, and estrogen receptor signalling.

View Article and Find Full Text PDF

Liposomal propolis loaded xanthan gum-salep hydrogels: Preparation, characterization, and in vitro bioaccessibility of phenolics.

Int J Biol Macromol

January 2025

Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye. Electronic address:

Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels.

View Article and Find Full Text PDF

By evaluating the stability profiles of each component of a vaccine candidate (antigens, adjuvants), formulation conditions to mitigate vaccine instability can be identified. In this work, two recombinant Cytomegalovirus (CMV) glycoprotein antigens (gB, Pentamer) were formulated with SPA14, a novel liposome-based adjuvant system containing a synthetic TLR4 agonist (E6020) and a saponin (QS21). Analytical characterization and accelerated stability studies were performed with the two CMV antigens, formulated with and without SPA14, under various conditions (temperature, pH, excipients).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!