The varicella-zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator.

J Virol

Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, SUNY, Buffalo, NY 14214, USA.

Published: January 2007

The varicella-zoster virus (VZV) ORF9 protein is a member of the herpesvirus UL49 gene family but shares limited identity and similarity with the UL49 prototype, herpes simplex virus type 1 VP22. ORF9 mRNA is the most abundantly expressed message during VZV infection; however, little is known concerning the functions of the ORF9 protein. We have found that the VZV major transactivator IE62 and the ORF9 protein can be coprecipitated from infected cells. Yeast two-hybrid analysis localized the region of the ORF9 protein required for interaction with IE62 to the middle third of the protein encompassing amino acids 117 to 186. Protein pull-down assays with GST-IE62 fusion proteins containing N-terminal IE62 sequences showed that amino acids 1 to 43 of the acidic transcriptional activation domain of IE62 can bind recombinant ORF9 protein. Confocal microscopy of transiently transfected cells showed that in the absence of other viral proteins, the ORF9 protein was localized in the cytoplasm while IE62 was localized in the nucleus. In VZV-infected cells, the ORF9 protein was localized to the cytoplasm whereas IE62 exhibited both nuclear and cytoplasmic localization. Cotransfection of plasmids expressing ORF9, IE62, and the viral ORF66 kinase resulted in significant colocalization of ORF9 and IE62 in the cytoplasm. Coimmunoprecipitation experiments with antitubulin antibodies indicate the presence of ORF9-IE62-tubulin complexes in infected cells. Colocalization of ORF9 and tubulin in transfected cells was visualized by confocal microscopy. These data suggest a model for ORF9 protein function involving complex formation with IE62 and possibly other tegument proteins in the cytoplasm at late times in infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797441PMC
http://dx.doi.org/10.1128/JVI.01274-06DOI Listing

Publication Analysis

Top Keywords

orf9 protein
36
orf9
13
protein
11
ie62
10
varicella-zoster virus
8
virus vzv
8
vzv orf9
8
infected cells
8
amino acids
8
confocal microscopy
8

Similar Publications

MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients.

Clin Rev Allergy Immunol

December 2024

Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.

Article Synopsis
  • * SARS-CoV-2 can inhibit this defense mechanism by producing specific proteins that interfere with MDA5's function and induce the production of antibodies against it.
  • * Genetic studies have identified variants in the ifih1 gene that are linked to COVID-19 risk, indicating that targeting MDA5 and its pathway could offer new treatment options for the disease.
View Article and Find Full Text PDF

Olive Leaf Mottling Virus: A New Member of the Genus .

Plants (Basel)

August 2024

Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra CV-315, km 10.7, 46113 Moncada, Valencia, Spain.

Studies of the virome of olive trees with symptoms of leaf mottling by high-throughput sequencing (HTS) revealed the presence of a new virus. Full coding genome sequences of two isolates were determined and consisted of a single RNA segment of 16,516 nt and 16,489, respectively. The genomic organization contained 10 open reading frames (ORFs) from 5' to 3': ORF1a, ORF1b (RdRp), ORF2 (p22), ORF3 (p7), ORF4 (HSP70h), ORF5 (HSP90h), ORF6 (CP), ORF7 (p19), ORF8 (p12), ORF9 (p23) and ORF10 (p9).

View Article and Find Full Text PDF

Grapevine leafroll-associated virus 3 (GLRaV-3) is a formidable threat to the stability of the global grape and wine industries. It is the primary etiological agent of grapevine leafroll disease (GLD) and significantly impairs vine health, fruit quality, and yield. GLRaV-3 is a member of the genus , family.

View Article and Find Full Text PDF

An estimation of the proportion of nonsynonymous to synonymous mutation (dn/ds, ω) of the SARS-CoV-2 genome would indicate the evolutionary dynamics necessary to evolve into novel strains with increased infection, virulence, and vaccine neutralization. A temporal estimation of ω of the whole genome, and all twenty-nine SARS-CoV-2 genes of major virulent strains of alpha, delta and omicron demonstrates that the SARS-CoV-2 genome originally emerged (ω ~ 0.04) with a strong purifying selection (ω < 1) and reached (ω ~ 0.

View Article and Find Full Text PDF

Introduction In December 2019, a global outbreak of SARS-CoV-2 occurred in Wuhan, China, resulting in the COVID-19 pandemic. Since then, the virus has spread to all countries, necessitating a worldwide initiative to create effective treatments and vaccines. Methods The RNA of samples QIAamp Viral RNA Mini Kit (Qiagen, MD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!