Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4I g) fusion protein, a novel immunosuppressive agent, was expressed in transgenic rice cell suspension culture and its characteristics and in vitro activities were investigated. The expression vector pMYN409 was constructed to express hCTLA4I g under the control of rice alpha-amylase 3D (RAmy3D) promoter. Transgenic calli were prepared by particle bombardment mediated transformation and were screened for hCTLA4I g expression using ELISA. Under the induction condition by sugar starvation, suspension-cultured rice cells secreted hCTLA4I g into the media up to 31.4 mg/L in flask culture. The rice-derived hCTLA4Ig (hCTLA4IgP) was purified from the culture media with affinity chromatography using protein A and compared with CHO-derived hCTLA4Ig (hCTLA4IgM). Recombinant hCTLA4IgP has molecular weight of approximately 50 kDa on SDS-PAGE under reducing condition, which is a little different from that of hCTLA4IgM probably due to the difference of carbohydrate chain structures. Purified hCTLA4IgP was biologically active and was confirmed to suppress T-cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2006.08.019DOI Listing

Publication Analysis

Top Keywords

expressed transgenic
8
transgenic rice
8
rice cell
8
cell suspension
8
production characterization
4
characterization human
4
human ctla4ig
4
ctla4ig expressed
4
rice
4
suspension cultures
4

Similar Publications

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF

Mice are one of the most common biological models for laboratory use. However, wild-type mice are not susceptible to COVID-19 infection due to the low affinity of mouse ACE2, the entry protein for SARS-CoV-2. Although mice with human ACE2 (hACE2) driven by Ace2 promoter reflect its tissue specificity, these animals exhibit low ACE2 expression, potentially limiting their fidelity in mimicking COVID-19 manifestations and their utility in viral studies.

View Article and Find Full Text PDF

Background: RNA silencing-based antiviral breeding is a promising strategy for developing virus-resistant plants.

Objectives: This study employed viral sense, anti-sense, and hairpin constructs to induce resistance against beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV).

Materials And Methods: For this purpose, a 120-bp conserved sequence of Rep- and C2-BCTV and a 222-bp conserved sequence of CP-, Reg-, and MP-BCTIV were selected for construct production.

View Article and Find Full Text PDF

Arachis hypogaea monoacylglycerol lipase AhMAGL3b participates in lipid metabolism.

BMC Plant Biol

December 2024

College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.

Background: Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop.

Results: Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana.

View Article and Find Full Text PDF

Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease.

Neurobiol Dis

December 2024

Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:

Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!