The purpose of this study was to propose a systematic approach to validate a finite element model (FEM) of the human mandible and to investigate the effects of changing the geometry and orthotropic material properties on the FEM predictions. Thirty-eight variables affecting the material properties, boundary conditions, and the geometry of a FEM of a human mandible, including two dental implants, were systematically changed, creating a number of FEMs of the mandible. The effects of the variations were quantified as differences in the principal strain magnitudes modeled by the original FEM (gold standard), prior to the sensitivity analyses, and those generated by the changed FEMs. The material properties that had the biggest impact on the predicted cortical principal strain were the shear moduli (up to 31% in difference from the unchanged state), and the absence of cancellous bone (up to 34%). Alterations to the geometry of the mandibular cross section, such as an increase in corpus dimensions, had the greatest effect on principal strain magnitudes (up to 16%). Changes in the cortical thickness in relation to the width of the corpus section modified strain more than alterations to the corpus depth (14% and 5%, respectively). The relatively small difference (up to 13.5%) between the predicted and measured interimplant distances indicates the accuracy of the FEM. Changes in geometry and orthotropic material properties could induce significant changes in strain patterns. These values must therefore be chosen with care when using finite element techniques for predicting stresses, strains, and displacements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.30881DOI Listing

Publication Analysis

Top Keywords

finite element
16
human mandible
16
material properties
16
element model
12
principal strain
12
model human
8
dental implants
8
fem human
8
geometry orthotropic
8
orthotropic material
8

Similar Publications

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.

View Article and Find Full Text PDF

Simulation of the performance of pillar array columns using the pore-throat ratio as efficiency descriptor.

J Chromatogr A

January 2025

Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.

Traditional packed beds in chromatography suffer from increased band broadening due to the random nature of packing, leading non-ideal fluid flow and channeling. To address these challenges, pillar array columns have been developed, offering improved performance over random packing thanks to their homogenous fluid profiles. The study aims to i) evaluate fluid dynamics and chromatographic performance across different PAC morphologies, ii) establish the influence of column morphology on performance, and iii) assess the correlation between chromatographic performance and hydrodynamic parameters.

View Article and Find Full Text PDF

Reconstruction of anterior talofibular ligament and posterior tibiotalar ligament enhance ankle stability after total talus replacement by finite element analysis.

Comput Methods Biomech Biomed Engin

January 2025

Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, Ministry of Education, Hunan University, Changsha, China.

Total talus replacement has been demonstrated to increase ankle instability. However, no studies have explored how to enhance postoperative stability. This study aims to explore the effect of collateral ligament reconstruction on ankle stability by finite element analysis.

View Article and Find Full Text PDF

: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!