Purpose: To study the influence of admixing inert buffer gases to laser-polarized (3)He in terms of resulting diffusion coefficients and the consequences for image contrast and resolution.

Materials And Methods: The diffusion coefficient of (3)He was altered by admixing buffer gases of various molecular weights ((4)He, N(2), and SF(6)). The influence of the pulse sequence and the diffusion coefficient on the appearance of MRI of (laser-polarized) gases was analyzed by comparison of basic theoretical concepts with demonstrative experiments.

Results: Excellent agreement between theoretical description and observed signal in simple gradient echoes was observed. A maximum signal gain can be predicted and was experimentally validated. Images acquired under such conditions revealed improved resolution. The nature and concentration of the admixed gas defines a structural threshold for the observed apparent diffusion coefficient (ADC) as demonstrated with diffusion-weighted MRI on a pig's lung flooded with suitable gas mixtures.

Conclusion: A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. Their molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this enables images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.20777DOI Listing

Publication Analysis

Top Keywords

buffer gases
16
diffusion coefficient
16
structural contrast
8
inert buffer
8
gases molecular
8
structural threshold
8
gases
6
diffusion
6
structural
5
mri
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!