Although the somatic cloning technique has been used for numerous applications and basic research of reprogramming in various species, extremely low success rates have plagued this technique for a decade. Further in mice, the "clonable" strains have been limited to mainly hybrid F1 strains such as B6D2F1. Recently, we established a new efficient cloning technique using trichostatin A (TSA) which leads to a 2-5 fold increase in success rates for mouse cloning of B6D2F1 cumulus cells. To further test the validity of this TSA cloning technique, we tried to clone the adult ICR mouse, an outbred strain, which has never been directly cloned before. Only when TSA was used did we obtain both male and female cloned mice from cumulus and fibroblast cells of adult ICR mice with 4-5% success rates, which is comparable to 5-7% of B6D2F1. Thus, the TSA treatment is the first cloning technique to allow us to successfully clone outbred mice, demonstrating that this technique not only improves the success rates of cloning from hybrid strains, but also enables mouse cloning from normally "unclonable" strains.

Download full-text PDF

Source
http://dx.doi.org/10.1262/jrd.18098DOI Listing

Publication Analysis

Top Keywords

cloning technique
16
success rates
16
mouse cloning
12
cloning
8
outbred strain
8
hybrid strains
8
adult icr
8
technique
6
successful mouse
4
cloning outbred
4

Similar Publications

Import of global high-risk clones is the primary driver of carbapenemase-producing in Norway.

J Med Microbiol

January 2025

Norwegian Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Troms, Norway.

Infections by carbapenemase-producing (CP-Pa) are concerning due to limited treatment options. The emergence of multidrug-resistant (MDR) high-risk clones is an essential driver in the global rise of CP-Pa. Insights into the molecular epidemiology of CP-Pa are crucial to understanding its clinical and public health impact.

View Article and Find Full Text PDF

Insights into proliferative glomerulonephritis with monoclonal immunoglobulin deposits - is it really monoclonal or not?

Curr Opin Nephrol Hypertens

January 2025

Control of the immune response B and lymphoproliferation, CNRS UMR 7276, INSERM UMR 1262, University of Limoges, Centre de référence de l'amylose AL et autres maladies par dépôts d'immunoglobuline monoclonale, Limoges, France; Service de néphrologie et Centre National de référence amylose AL et autres maladies à dépôts d'immunoglobulines monoclonales, Centre Hospitalier Universitaire, Université de Poitiers, Poitiers, France.

Purpose Of Review: Proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID), is a disease defined by the presence of glomerulonephritis with nonorganized mono-isotypic immunoglobulin (Ig) deposits. This review will discuss the pathogenesis of PGNMID and address novel techniques for detection of monoclonal Ig and pathologic B-cell clones and for distinguishing monoclonal from oligoclonal Ig deposits.

Recent Findings: Because of low detection rate of circulating monoclonal Ig and nephritogenic B-cell clones and emerging reports of PGNMID-IgG in children, it has been recently argued that many PGNMID-IgG3 cases may not be monoclonal lesions.

View Article and Find Full Text PDF

Purpose: To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB.

Methods: A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS.

View Article and Find Full Text PDF

Development of an immunodiagnostic assay for the detection of .

Turk J Biol

August 2024

Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.

Background/aim: (SCMV; genus and family ), poses a significant threat to global sugarcane cultivars, including those in Pakistan. The aim of this study was to develop a rapid and effective diagnostic tool for detection of SCMV, enabling timely implementation of control measures to mitigate potential yield losses.

Materials And Methods: The study focused on the in silico analysis, physicochemical properties, immunogenicity, and subcellular localization of the SCMV coat protein (CP).

View Article and Find Full Text PDF

Construction and verification of an infectious cDNA clone of encephalomyocarditis virus from pigs.

J Virol Methods

January 2025

Huzhou Key Laboratory of Innovation and Application of Agricultural Germplasm Resources, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China. Electronic address:

In this study, a novel Encephalomyocarditis virus (EMCV) reverse genetic operating system was developed utilizing CMV promoters, enabling EMCV genome expression under the transcriptional control of the CMV immediate early promoter and BGH polyA transcriptional-termination signal. The full-length cDNA of EMCV BJC3 was ligated to the pRK5 vector, incorporating the CMV eukaryotic promoter sequence, resulting in the construction of recombinant plasmid EMCV (pEMCV). Subsequently, the recombinant plasmid was transfected into BHK-21 cells to generate the rescue virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!