There is evidence for neurodevelopment disturbances in schizophrenia. In rats, a neonatal basolateral amygdala lesion induces behavioural features in adults reminiscent of the symptomatology of schizophrenia. Dopamine plays a key role in the pathogenesis of schizophrenia, and cannabis use has been implicated in the risk for developing schizophrenia. The effects of an excitotoxic, bilateral basolateral amygdala lesion on postnatal days 7 or 21 were compared when the rats were adult. The behavioural response to a novelty challenge and the level of dopamine receptors and cannabinoid receptors in the brain using in-vitro autoradiography was determined. In brain tissue punches concentrations of monoamines and metabolites were determined by high-performance liquid chromatography. The neonatal lesion, but not the later lesion induced behavioural hyperactivity and biochemical effects. The neonatal lesion reduced the density of dopamine D2-like, but not D3-, and less markely D1-like receptors and increased dopamine turnover. These effects were observed in the mesolimbic, but not in the striatal regions. In contrast, density of cannabinoid receptors was increased in the striatal, but not the mesolimbic regions of these animals. Noradrenergic neurotransmission was reduced in both regions. The present findings contribute to the idea that the neonatal basolateral amygdala lesion induces features in adults reminiscent of the neurodevelopmental disturbances in schizophrenia, with a focus on the amygdala-prefrontal cortex-nucleus accumbens circuit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1461145706007346 | DOI Listing |
J Neurosci
January 2025
Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599.
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Electronic address:
Structural changes involving new neurons can occur through stem cell-driven neurogenesis and late-maturing immature neurons, namely undifferentiated neuronal precursors frozen in a state of arrested maturation. The latter exist in the cerebral cortex, being particularly abundant in large-brained mammals. Similar cells have been described in the amygdala of some species, although their interspecies variation remain poorly understood.
View Article and Find Full Text PDFDominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for intermediate-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how the brains of intermediate-ranked mice in hierarchies respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers.
View Article and Find Full Text PDFeNeuro
January 2025
Tufts University School of Medicine, Department of Neuroscience, Boston, MA, USA.
Psychiatric disorders, including anxiety and depression, are highly comorbid in people with epilepsy. However, the mechanisms mediating the shared pathophysiology are currently unknown. There is considerable evidence implicating the basolateral amygdala (BLA) in the network communication of anxiety and fear, a process demonstrated to involve parvalbumin-positive (PV) interneurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!