Misregulation of tau alternative splicing in neurodegeneration and dementia.

Prog Mol Subcell Biol

Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 06155, USA.

Published: January 2007

AI Article Synopsis

  • Tau is a key protein for neuronal formation and health, producing various isoforms through alternative splicing that affects its function.
  • Disruptions in tau expression lead to problems in the neuronal cytoskeleton and the formation of neurofibrillary tangles, common in dementia patients.
  • The review discusses how changes in tau splicing regulation are linked to neurodegenerative diseases that cause dementia.

Article Abstract

Tau is a microtubule-associated protein that fulfills several functions critical for neuronal formation and health. Tau discharges its functions by producing multiple isoforms via intricately regulated alternative splicing. These isoforms modulate tau function in normal brain by altering the domains of the protein, thereby influencing its conformation and post-translational modifications and hence its affinity for microtubules and other ligands. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of pathological tau structures (neurofibrillary tangles) found in brains of dementia sufferers. More specifically, aberrations in tau splicing regulation directly cause several neurodegenerative diseases that lead to dementia. This review briefly presents our cumulative knowledge of tau splicing regulation in connection with the alterations in tau splicing seen in neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-540-34449-0_5DOI Listing

Publication Analysis

Top Keywords

tau splicing
12
alternative splicing
8
splicing neurodegeneration
8
tau
8
splicing regulation
8
splicing
5
misregulation tau
4
tau alternative
4
neurodegeneration dementia
4
dementia tau
4

Similar Publications

Multimodal study of Alzheimer's disease (AD) dorsolateral prefrontal cortex (DLPFC) showed AD-related aberrant intron retention (IR) and proteomic changes not observed at the RNA level. However, the role of sex and how IR may impact the proteome are unclear. Analysis of DLPFC transcriptome showed a clear sex-biased pattern where female AD had 1645 elevated IR events compared to 80 in male AD DLPFC.

View Article and Find Full Text PDF

Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways.

Proteomics

January 2025

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Background: CRISPR is widely used to silence genes by inducing mutations expected to nullify their expression. While numerous computational tools have been developed to design single-guide RNAs (sgRNAs) with high cutting efficiency and minimal off-target effects, only a few tools focus specifically on predicting gene knockouts following CRISPR. These tools consider factors like conservation, amino acid composition, and frameshift likelihood.

View Article and Find Full Text PDF

Oxidative stress is an important driver of aging and has been linked to numerous neurodegenerative disorders, including Alzheimer's disease. A key pathological hallmark of Alzheimer's are filamentous inclusions made of the microtubule associated protein Tau. Based on alternative splicing, Tau protein can feature either three or four microtubule binding repeats.

View Article and Find Full Text PDF

Microtubule-associated protein tau is inextricably linked to a group of clinically diverse neurodegenerative diseases termed tauopathies. The ratio balance of the major tau splicing isoform groups (3 R- and 4 R-tau) is critical in maintaining healthy neurons. An imbalance causing excess 4 R tau is associated with diseases such as progressive supranuclear palsy and frontotemporal dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!