Objective: NK026680 is a newly identified type of immunosuppressive agent that inhibits dendritic cell (DC) functions and consequently reduces the mortality of mice with experimental acute graft-versus-host disease. This study was undertaken to evaluate NK026680 suppression of DC functions in preventing development of rapidly progressive glomerulonephritis (RPGN) and perinuclear antineutrophil cytoplasmic antibodies (pANCA) in SCG/Kj mice.
Methods: Oral administration of NK026680 to SCG/Kj mice began when mice were 8-10 weeks old, before the onset of disease, and continued for 56 days. The efficacy of NK026680 was evaluated using the mortality of mice, the results of urinalysis, histopathologic evaluation for glomerular injury, and immunofluorescence staining for the detection of immune complex (IC) deposition in glomeruli, and by assessing lymphadenopathy and measuring autoantibody titers.
Results: Oral administration of NK026680 at a dosage of 25 mg/kg once daily or 50 mg/kg once daily significantly suppressed 1) spontaneous mortality, 2) proteinuria and hematuria, 3) blood urea nitrogen levels, 4) glomerular damage characterized histopathologically, 5) IC deposition in glomeruli, 6) the development of pANCA and anti-DNA antibodies, and 7) lymphadenopathy.
Conclusion: The newly identified DC inhibitor, NK026680, prevented the onset of RPGN, autoantibody production, and lymphadenopathy in SCG/Kj mice, suggesting a crucial role for DC function in these autoimmune phenotypes. NK026680 may be a potent immunosuppressive agent for the treatment of ANCA-associated renovascular disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.22187 | DOI Listing |
Clin Exp Immunol
March 2024
Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki City, Osaka, Japan.
Based on the efficacy of intravenous immunoglobulin (IVIg) for the treatment of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), we developed a recombinant single-chain-fragment variable clone, VasSF, therapeutic against AAV in a mouse model (SCG/Kj mice). VasSF is thought to bind to vasculitis-associated apolipoprotein A-II (APOA2) as a target molecule. VasSF is a promising new drug against AAV, but difficulties in the yield and purification of VasSF remain unresolved.
View Article and Find Full Text PDFJCI Insight
August 2023
Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Neutrophil extracellular trap (NET) formation contributes to immune defense and is a distinct form of cell death. Excessive NET formation is found in patients with anti-neutrophil cytoplasmic antibody-associated (ANCA-associated) vasculitis (AAV), contributing to disease progression. The clearance of dead cells by macrophages, a process known as efferocytosis, is regulated by the CD47-mediated "don't eat me" signal.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2022
Asia International Institute of Infectious Disease Control and General Medical Education and Research Center, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.
Background: Kawasaki disease (KD) is usually treated with high-dose intravenous immunoglobulin (IVIg) as severe infectious and other diseases. Due to issues that are associated with immunoglobulin preparation, such as the risk of possible contamination by infectious agents and limited blood banking resources, recombinant immunoglobulins are required. We developed a novel recombinant antibody drug candidate, "VasSF," based on the therapeutic effects it exerted on a mouse spontaneous crescentic glomerulonephritis model (SCG/Kj).
View Article and Find Full Text PDFAutoimmunity
July 2020
Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo, Japan.
Drug Des Devel Ther
August 2019
Department of Research and Development, A-CLIP Institute, Ltd., Chiba, Japan,
Background: Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis is a pauci-immune disease with the inflammation of the small blood vessels. The efficacies of antibody drugs for induction therapies of vasculitis vary among cases. Here, we developed a novel clone of a single chain Fv region (ScFv) with vasculitis-specific therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!