Background: Brahma gene (BRM) and Brahma-related gene 1 (BRG1) are major components with ATPase enzymatic activities in the nucleosome remodeling SWI/SNF complex, and their expression pattern in human prostate cancers is unknown.

Method: We analyzed a published cDNA microarray data set of prostate cancers for the expression of SWI/SNF genes, and then we evaluated the expression levels of BRG1 and BRM proteins with a semi-quantitative immunohistochemistry (IHC) approach in a pairwise manner of malignant versus benign tissues from individual prostate cancers. The correlation of BRG1/BRM expression with clinical parameters was analyzed.

Results: Microarray data showed an aberrant expression of BRG1 and BRM but not SNF5/INI1 genes in different stages of the disease course. In immunochemistry studies, BRG1 expression was significantly higher in malignant tissues compared to their benign compartments, and this difference was more profound in high-grade cancers. Although BRM expression showed a heterogeneous pattern, the average level of BRM expression was lower in malignant tissues than that in benign tissues. More interestingly, BRG1 and BRM expression showed a reciprocal pattern in both benign and malignant tissues of individual cases. In malignant tissues, higher BRG1 but not BRM expression levels were associated with larger volume of tumor mass. Increased expression of BRG1 but not BRM protein was observed in invasive cancer cells. Consistently, overexpression of exogenous wild-type BRG1 and BRM but not mutant BRG1 enhanced cancer cell invasion in an in vitro cell invasion assay.

Conclusions: We provide the first evidence that aberrant expression of BRG1 and BRM genes is associated with disease development and progression in prostate cancers and increased BRG1 expression may promote tumor growth and invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.20521DOI Listing

Publication Analysis

Top Keywords

brg1 brm
28
prostate cancers
20
malignant tissues
16
brm expression
16
expression
13
aberrant expression
12
expression brg1
12
brg1
11
brm
10
expression swi/snf
8

Similar Publications

Differentiation therapy targeting the stalled epigenetic developmental programs in pediatric high-grade gliomas.

Pharmacol Res

January 2025

Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China. Electronic address:

Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells.

View Article and Find Full Text PDF

BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.

View Article and Find Full Text PDF

Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance.

J Biol Chem

December 2024

Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, China. Electronic address:

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from preimplantation and postimplantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BRG1/BRM-associated factor (BAF) chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.

View Article and Find Full Text PDF

Tumor infiltrating T-cells and loss of expression of SWI/SNF genes in varying stages of clear cell renal cell carcinoma.

Pathol Res Pract

December 2024

Department of Pathology and Genomic Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, United States; Physician Sciences Medical Group, Norfolk General Hospital, Norfolk, VA, United States.

Background: Patients with clear cell renal cell carcinoma (ccRCC) metastases face poor prognoses, even with adjuvant therapies. Tumor-infiltrating T-cells and macrophages are critical in targeting tumor cells within the renal microenvironment. Beyond VHL mutations, loss-of-function mutations in SWI/SNF complex genes, including PBRM1, BAP1, ARID1A, SETD2, SMARCA4 (BRG1), and SMARCA2 (BRM), have been implicated in ccRCC progression.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined 16 cases of small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), focusing on clinical features, molecular traits, and family genetics over a decade at Fudan University.
  • Patients had a mean diagnosis age of 28.7 years, with unique tumor characteristics; most were unilateral, with significant sizes, and misdiagnosed in many cases, while specific protein expressions were analyzed.
  • Survival rates over time were low, with only 22.6% surviving two years, highlighting the need for accurate diagnosis and better understanding of the disease's genetic components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!