A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of critical amino acid residues in the plague biofilm Hms proteins. | LitMetric

Identification of critical amino acid residues in the plague biofilm Hms proteins.

Microbiology (Reading)

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA.

Published: November 2006

Yersinia pestis biofilm formation causes massive adsorption of haemin or Congo red in vitro as well as colonization and eventual blockage of the flea proventriculus in vivo. This blockage allows effective transmission of plague from some fleas, like the oriental rat flea, to mammals. Four Hms proteins, HmsH, HmsF, HmsR and HmsS, are essential for biofilm formation, with HmsT and HmsP acting as positive and negative regulators, respectively. HmsH has a beta-barrel structure with a large periplasmic domain while HmsF possesses polysaccharide deacetylase and COG1649 domains. HmsR is a putative glycosyltransferase while HmsS has no recognized domains. In this study, specific amino acids within conserved domains or within regions of high similarity in HmsH, HmsF, HmsR and HmsS proteins were selected for site-directed mutagenesis. Some but not all of the substitutions in HmsS and within the periplasmic domain of HmsH were critical for protein function. Substitutions within the glycosyltransferase domain of HmsR and the deacetylase domain of HmsF abolished biofilm formation in Y. pestis. Surprisingly, substitution of highly conserved residues within COG1649 did not affect HmsF function.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.29224-0DOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
hms proteins
8
hmsh hmsf
8
hmsf hmsr
8
hmsr hmss
8
periplasmic domain
8
domain hmsf
8
hmsf
5
identification critical
4
critical amino
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!