BiP internal ribosomal entry site activity is controlled by heat-induced interaction of NSAP1.

Mol Cell Biol

Department of Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea.

Published: January 2007

TheBiP protein, a stress response protein, plays an important role in the proper folding and assembly of nascent protein and in the scavenging of misfolded proteins in the endoplasmic reticulum lumen. Translation of BiP is directed by an internal ribosomal entry site (IRES) in the 5' nontranslated region of the BiP mRNA. BiP IRES activity increases when cells are heat stressed. Here we report that NSAP1 specifically enhances the IRES activity of BiP mRNA by interacting with the IRES element. Overexpression of NSAP1 in 293T cells increased the IRES activity of BiP mRNA, whereas knockdown of NSAP1 by small interfering RNA (siRNA) reduced the IRES activity of BiP mRNA. The amount of NSAP1 bound to the BiP IRES increased under heat stress conditions, and the IRES activity of BiP mRNA was increased. Moreover, the increase in BiP IRES activity with heat treatment was not observed in cells lacking NSAP1 after siRNA treatment. BiP mRNAs were redistributed from the heavy polysome to the light polysome in NSAP1 knockdown cells. Together, these data indicate that NSAP1 modulates IRES-dependent translation of BiP mRNA through an RNA-protein interaction under heat stress conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800651PMC
http://dx.doi.org/10.1128/MCB.00814-06DOI Listing

Publication Analysis

Top Keywords

bip mrna
24
ires activity
24
activity bip
16
bip
12
bip ires
12
ires
9
internal ribosomal
8
ribosomal entry
8
entry site
8
nsap1
8

Similar Publications

Background: Maternal hypertensive disorders of pregnancy (HDP) was associated with increased risk of congenital hypothyroidism in preterm infants, but its underlying mechanisms remain unclear.

Objective: To investigate the possible mechanisms by which intrauterine exposure to HDP affects thyroid hormone synthesis in preterm infant rats.

Methods: preterm infant rats were obtained by Caesarean section delivery from the L-NAME group and Control groups which was induced by L-NAME and saline, respectively.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function. Renal ischemia-reperfusion injury (RIRI) is one of the main causes of AKI with the underlying mechanism incompletely clarified. The liver X receptors (LXRs), including LXRα and LXRβ, are members of the nuclear receptor superfamily.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).

View Article and Find Full Text PDF

Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock.

PLoS Genet

January 2025

School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.

A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.

View Article and Find Full Text PDF

Background/objectives: Genetic variants in PRSS1 encoding human cationic trypsinogen are associated with hereditary pancreatitis. The clinically frequent variants exert their pathogenic effect by increasing intrapancreatic trypsin activity, while a distinct subset of variants causes disease via mutation-induced trypsinogen misfolding and endoplasmic reticulum (ER) stress. Here, we report a novel misfolding PRSS1 variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!