Even though studies on isolated papillary muscles and cardiomyocytes can be applied to the mechanics of a beating heart, it is not always easy for physicians to relate these findings to clinical medicine. Thus, it is important to extend the studies to intact heart either in simulations or in animal models and even better to validate the results with human subjects. Advances in engineering and computer technology have allowed us to bridge the gap between physiology and mechanics. Cardiomyocyte stress/strain relates to muscle energy expenditure, which dictates oxygen and substrate utilization. Appreciation of this sequential relationship by clinicians will facilitate the logical development and assessment of therapies. Theory of finite element analysis (FEA) can predict cardiac mechanics under normal and pathologic conditions. Imaging studies provide an avenue to relate these predictions indirectly to experimental studies. In this fashion, we can understand the mechanical basis for the micro- and macroanatomical twisting motion of the beating heart. The purposes of this manuscript are: (1) to examine the terms that are traditionally used to describe mechanical stresses and strain within the ventricle, (2) to explore the three-dimensional organization of cardiomyocytes that influences global ventricular function, (3) to apply mechanical measures to both single cardiomyofibrils and the intact ventricle (4) to evaluate mathematical and computer models used to characterize cardiac mechanics, and (5) to outline the clinical methods available to measure ventricular function and relate findings from FEA to pathologic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1540-8191.2006.00314.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!