Two case reports of recurrent granular dystrophy in corneal grafts after penetrating keratoplasty are presented. Slit-lamp examination and confocal microscopy (HRT II) were performed in two patients with recurrent granular dystrophy. All confocal microscopic findings of granular dystrophy were evaluated in the graft. Dystrophic lesions of the donor cornea presented the same confocal microscopic aspects in both eyes, and were similar to granular dystrophy lesions. Confocal microscopy is an imaging method that may provide new information on corneal microanatomy in dystrophies. It may be particularly useful in improving the early diagnosis of dystrophic lesions in corneal grafts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1442-9071.2006.01329.xDOI Listing

Publication Analysis

Top Keywords

granular dystrophy
20
confocal microscopy
12
recurrent granular
12
dystrophy corneal
8
penetrating keratoplasty
8
corneal grafts
8
confocal microscopic
8
dystrophic lesions
8
granular
5
dystrophy
5

Similar Publications

(1) Background: The phenotypes of classic lattice corneal dystrophy (LCD) and granular corneal dystrophy type 2 (GCD2) that result from abnormalities in gene () have previously been described. The phenotype of compound heterozygous classic LCD and GCD2, however, has not yet been reported. (2) Case report: A 39-year-old male (proband) presented to our clinic complaining of decreased vision bilaterally.

View Article and Find Full Text PDF

In Vivo Confocal Microscopy Findings in Corneal Stromal Dystrophies.

Diagnostics (Basel)

January 2025

Department of Ophthalmology, Faculty of Medicine, Selcuk University, Konya 42130, Türkiye.

In this study, we aim to evaluate in vivo confocal microscopy (IVCM) findings of corneal stromal dystrophies (CSDs) including granular, macular and lattice corneal dystrophy that can be used for differential diagnosis and monitoring recurrences after surgical interventions. : Patients diagnosed with CSD who were followed-up in the cornea and ocular surface unit were included in this study. IVCM was performed using the Heidelberg Retina Tomograph 3, Rostock Cornea Module (Heidelberg Engineering, Germany) and anterior segment optical coherence tomography (AS-OCT) imaging was performed using the Spectralis OCT (Heidelberg Engineering, Germany).

View Article and Find Full Text PDF

Corneal dystrophies are a group of rare genetic eye disorders characterized by the accumulation of abnormal material in different layers of the cornea, potentially leading to vision impairment. In vivo confocal microscopy (IVCM) is an emerging non-invasive imaging and diagnostic tool that helps study the ocular surface microstructure. This case report examines the clinical characteristics of Avellino corneal dystrophy in a young patient through the use of slit lamp examination, IVCM, and optical coherence tomography (OCT) in order to assess the effectiveness of these non-invasive tests as diagnostic tools.

View Article and Find Full Text PDF

Objective: The pathogenesis of inflammatory myopathies is poorly understood and there is a need to dissect the transcriptome in more granular ways beyond gene expression.

Methods: We used a set of muscle RNA-sequencing data from different myositis subtypes grouped by their specific autoantibodies (n = 152). We quantified annotated RNA transcripts for each myositis subtype and identified uniquely expressed RNA as well as transcriptional similarities among myositis types.

View Article and Find Full Text PDF

Purpose: To report the management of recurrent TGF BI dystrophy after prior femtosecond-assisted anterior lamellar keratoplasty (FALK) with repeat FALK.

Methods: Clinical and histopathological study of 2 eyes of 2 patients with a recurrence of TGFBI dystrophy. Patient 1 had Reis-Buckler corneal dystrophy, and patient 2 had granular corneal dystrophy GCD type 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!