Electrotransfer into skeletal muscle for protein expression.

Curr Gene Ther

Inserm, U640, Paris, F-75006 France.

Published: October 2006

An efficient and safe method to deliver DNA in vivo is a requirement for several purposes, such as study of gene function and gene therapy applications. Among the different non-viral delivery methods currently under investigation, in vivo DNA electrotransfer has proven to be one of the most efficient and simple. This technique is a physical method of gene delivery consisting in local application of electric pulses after DNA injection. Although this technique can be applied to almost any tissue of a living animal, including tumors, skin, liver, kidney, artery, retina, cornea or even brain, this review will focus on electrotransfer of plasmid DNA into skeletal muscle and its possible uses in gene therapy, vaccination, or functional studies. Skeletal muscle is a good target for electrotransfer of DNA as it is: a large volume easily accessible, an endocrine organ capable of expressing several local and systemic factors, and muscle fibres as post-mitotic cells have a long lifespan that allows long-term gene expression. In this review, we describe the mechanism of DNA electrotransfer, we assess toxicity and safety considerations related to this technique, and we focus on important therapeutic applications of electrotransfer demonstrated in animal models in recent years.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156652306778520656DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
gene therapy
8
dna electrotransfer
8
electrotransfer
6
dna
6
gene
5
electrotransfer skeletal
4
muscle
4
muscle protein
4
protein expression
4

Similar Publications

Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.

View Article and Find Full Text PDF

Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals.

View Article and Find Full Text PDF

Knee joint position influences ankle torque, but it is unclear whether the soleus compensates to counteract the reductions in gastrocnemius output during knee-flexed versus knee-extended plantarflexions. Therefore, the purpose of this study was to determine the effects of knee joint position and plantarflexion contraction velocity on ankle plantarflexion torque and electromyography activity of the medial gastrocnemius and soleus in healthy young adults. Healthy male participants (n=30) performed concentric plantar flexions in a custom-built dynamometer from 15° dorsiflexion to 30° plantarflexion at gradually increasing velocities during each contraction at 30, 60, 120, 180, and 210° s-1 in a supine position with the knee fully extended and while kneeling with the knee fixed in 90° flexion.

View Article and Find Full Text PDF

Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Prenuvo, Vancouver, BC, Canada.

Background: Sarcopenia has been linked to brain atrophy and there is lack of information on specific muscle groups that may contribute to this link. The psoas muscles are sensitive to sarcopenia and thus may sensitively relate to brain aging and Alzheimer disease risk.

Method: This study utilized 7,149 healthy individuals across four sites (Mean age 53.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!