During maturation, procaspase-3 is cleaved at D175, which resides in a linker that connects the large and small subunits. The intersubunit linker also connects two active site loops that rearrange following cleavage and, in part, form the so-called loop bundle. As a result of chain cleavage, new hydrogen bonds and van der Waals contacts form among three active site loops. The new interactions are predicted to stabilize the active site. One unresolved issue is the extent to which the loop bundle residues also stabilize the procaspase active site. We examined the effects of replacing four loop bundle residues (E167, D169, E173, and Y203) on the biochemical and structural properties of the (pro)caspase. We show that replacing the residues affects the activity of the procaspase as well as the mature caspase, with D169A and E167A replacements having the largest effects. Replacement of D169 prevents caspase-3 autoactivation, and its cleavage at D175 no longer leads to an active enzyme. In addition, the E173A mutation, when coupled to a second mutation in the procaspase, D175A, may alter the substrate specificity of the procaspase. The mutations affected the active site environment as assessed by changes in fluorescence emission, accessibility to quencher, and cleavage by either trypsin or V8 proteases. High-resolution X-ray crystallographic structures of E167A, D173A, and Y203F caspases show that changes in the active site environment may be due to the increased flexibility of several residues in the N-terminus of the small subunit. Overall, the results show that these residues are important for stabilizing the procaspase active site as well as that of the mature caspase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119718 | PMC |
http://dx.doi.org/10.1021/bi0611964 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.
Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Aims: The gastrointestinal (GI) tract is composed of distinct sub-regions, which exhibit segment-specific differences in microbial colonization and (patho)physiological characteristics. Gut microbes can be collectively considered as an active endocrine organ. Microbes produce metabolites, which can be taken up by the host and can actively communicate with the immune cells in the gut lamina propria with consequences for cardiovascular health.
View Article and Find Full Text PDFMicrotubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite , microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of .
View Article and Find Full Text PDFThe [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.
View Article and Find Full Text PDFJ Hand Microsurg
March 2025
Department of Orthopedics Surgery and Traumatology, Faculty of Medicine, Assiut University, Assiut, Egypt.
Background: Vascularized bone grafts (VBGs) are currently the main surgical option for the restoration of humeral bone defects particularly when defects are larger than 6 cm. Because it offers a strong, rapid blood supply, VBGs easily integrate into the recipient sites and undergo active resorption and remodeling into healthy bone through primary bone healing. Additionally, they support the recipient site's immune system in preventing and reducing infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!