Chemical genetic strategies to delineate MAP kinase signaling pathways using protein-fragment complementation assays (PCA).

Methods

Université de Montréal, Canada Research Chair, Integrative Genomics, CP 6128, Succ. Centre-ville, Montreal, Canada H3C 3J7.

Published: November 2006

Signal transduction pathways mediated by MAP kinases are among the most studied. Direct analysis of MAP kinase pathways has been difficult because some details of MAP kinase signaling cannot be studied in vitro. Here, we describe a strategy for directly analyzing MAP kinase signaling pathways in living cells using protein-fragment complementation assays (PCA) based on intensely fluorescent proteins. The assays allow for spatial and temporal analysis of protein complexes including those that form upstream and downstream from MAPKs as well as complexes of MAPKs with regulator and effector proteins. We describe high-content assays, high-throughput quantitative microscopic methods to follow temporal changes in complex subcellular location and quantity. Spatial and temporal changes in response to perturbations (chemical, siRNA, and hormones) allow for delineation of MAPK signaling networks and a general and high-throughput approach to identify small molecules that act directly or indirectly on MAPK pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2006.07.016DOI Listing

Publication Analysis

Top Keywords

map kinase
16
kinase signaling
12
signaling pathways
8
protein-fragment complementation
8
complementation assays
8
assays pca
8
spatial temporal
8
temporal changes
8
map
5
pathways
5

Similar Publications

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

The paradoxical activity of BRAF inhibitors: potential use in wound healing.

Arch Dermatol Res

January 2025

Department of Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.

The area of wound healing presents a promising field of interest for clinicians as well as the scientific community. A major concern for physicians is the rising number of elderly people suffering from diabetes, leprosy, tuberculosis and the associated chronic wounds. While traditional therapies target basic wound care, innovative strategies that accelerate wound healing are needed.

View Article and Find Full Text PDF

Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.

View Article and Find Full Text PDF

Background/purpose: Dual-cure resin-cements are used for various dental restorations. However, whether the curing modes of these resin-cements influence gingival inflammation remains unclear. Hence, herein, we evaluated the effects of dual-cure resin-cement curing modes on gingival cytotoxicity and inflammatory responses.

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!