Background: Chimeric proteins may be used to direct cell-specific activity. Heparin-binding growth-associated molecule (HBGAM) binds to cell receptors that are relatively more robust on endothelial cells, and it may confer endothelial cell selectivity to potent angiogens such as fibroblast growth factor-1 (FGF-1).
Methods: By ligating fibroblast growth factor or its potent mutant, S130K, to HBGAM, we tested their effect on re-endothelialization after angioplasty injury by using a canine model.
Results: Both HBGAM/S130K- and HBGAM/FGF-1-treated arteries had increased neointimal mitotic index and re-endothelialization rates at 30 days compared with control arteries without inducing a significant increase in the neointimal thickness or the ratio of neointimal to medial thickness between treatment and control groups.
Conclusion: HBGAM/S130K and HBGAM/FGF-1 facilitates endothelial healing without myointimal thickening after canine carotid artery balloon angioplasty injury. Application of these growth factors in fibrin glue may improve endothelialization clinically after angioplasty or endarterectomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjsurg.2006.08.005 | DOI Listing |
Diabetes
January 2025
Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
UCL Institute of Ophthalmology, University College London, London, UK.
Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.
Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.
Small
January 2025
Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China.
Oral mucosal injuries are commonly caused by factors such as trauma, infection, or inflammation, especially in diabetic patients where healing is difficult and significantly affects quality of life. In this study, a nanocarrier system based on DNA tetrahedrons (TDN) is developed, which serve as ideal vectors due to their excellent intracellular uptake and drug delivery capabilities. By efficiently delivering miR132 into cells, the proliferation and migration of human oral mucosal fibroblasts (HOMFs) and human umbilical vein endothelial cells (HUVECs) are regulated, along with the modulation of inflammation and antioxidant processes.
View Article and Find Full Text PDFGels
January 2025
National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania.
Chronic wounds are a major health problem, affecting millions of people worldwide. Resistance to treatment is frequently observed, requiring an extension of the wound healing time, and improper care can lead to more problems in patients. Smart wound dressings that provide a controlled drug release can significantly improve the healing process.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.
Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!