Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We studied the involvement of two members of the CCAAT/enhancer binding proteins (C/EBPs) family of transcription factors, C/EBPalpha and C/EBPbeta, in glial activation induced by different stimuli in rat cerebellar neuronal-glial cultures. Glial activation was induced by two types of neuronal death--excitotoxic and apoptotic. We had previously reported that these two induction mechanisms resulted in different patterns of glial activation (K. Pérez-Capote, J. Serratosa, C. Solà, Excitotoxic and apoptotic neuronal death induce different patterns of glial activation in vitro, J. Neurochem. 94 (2005) 226-237), only the former involving an inflammatory response. Glial activation was also induced by lipopolysaccharide (LPS) from E. coli, an inflammatory agent with a known direct effect on glial cells. Using immunocytochemical techniques, here we examined whether changes in C/EBPalpha and C/EBPbeta expression are selectively associated with a determinate pattern of glial activation. Excitotoxic neuronal death increased glial C/EBPbeta expression in the absence of alterations in C/EBPalpha expression, while no effect was observed following neuronal apoptosis. LPS treatment decreased C/EBPalpha and increased C/EBPbeta expression in glial cells. These results implicate C/EBPs in glial activation, although these two factors appear to have different roles. C/EBPalpha expression decreases only in response to LPS, while C/EBPbeta expression is increased by both LPS and excitotoxic neuronal death, although not by neuronal apoptosis. These results show that C/EBPbeta plays an active role in glial activation, but only when this involves an inflammatory reaction, suggesting a role for C/EBPbeta in neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2006.09.078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!