Background And Purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first ever measurements of the biological effectiveness of antiprotons.
Materials And Methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7MeV antiprotons, 48MeV protons, or (60)Co gamma-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness.
Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which compares the response in a minimally spread out Bragg peak (SOBP) to that in the plateau as a function of particle fluence. This value was approximately 3.75 times larger for antiprotons than for protons. This increase arises due to the increased dose deposited in the Bragg peak by annihilation and because this dose has a higher relative biological effectiveness (RBE).
Conclusion: We have produced the first measurements of the biological consequences of antiproton irradiation. These data substantiate theoretical predictions of the biological effects of antiproton annihilation within the Bragg peak, and suggest antiprotons warrant further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2006.09.012 | DOI Listing |
Clin Transl Radiat Oncol
March 2025
Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands (the).
Background And Purpose: Radiotherapy induces tumor cell killing by generating DNA double strand breaks (DSBs). The effectiveness of radiotherapy is significantly influenced by the repair of DSBs, which counteracts this lethal effect. Current investigations are focused on determining whether non-homologous end joining (NHEJ) or homologous recombination is the predominant repair pathway following proton and photon radiation.
View Article and Find Full Text PDFA wavelength demodulation method for ultra-short fiber Bragg grating (US-FBG) sensors based on an arrayed waveguide grating (AWG) and a convex optimization algorithm is proposed and demonstrated. Instead of measuring the output power ratio of the two adjacent AWG channels as previously done, in this work the wavelength demodulation is realized by reconstructing the US-FBG spectrum. The principle of spectral reconstruction involves using an AWG to sample the spectral information of US-FBG and constructing underdetermined matrix equations with the obtained prior information on transmission responses and the detected output power from multiple AWG channels.
View Article and Find Full Text PDFMed Phys
December 2024
Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Background: A passive dosimeter framework for the measurement of dose in carbon ion beams has yet to be characterized or implemented for regular use.
Purpose: This work determined the dose calculation correction factors for absorbed dose in thermoluminescent dosimeters (TLDs) in a therapeutic carbon ion beam. TLD could be a useful tool for remote audits, particularly in the context of clinical trials as new protocols are developed for carbon ion radiotherapy.
Sensors (Basel)
November 2024
Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
A respiration rate (RR) monitoring system was created by integrating a Fibre Bragg Grating (FBG) optical fibre sensor into a respirator mask. The system exploits the sensitivity of an FBG to temperature to identify an individual's RR by measuring airflow temperature variation near the nostrils and mouth. To monitor the FBG response, a portable, battery-powered, wireless miniature interrogator system was developed to replace a relatively bulky benchtop interrogator used in previous studies.
View Article and Find Full Text PDFRadiother Oncol
December 2024
Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark.
Background And Purpose: In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!