A novel LAGLIDADG-type homing endonuclease (HEase), I-Tsp061I, from the hyperthermophilic archaeon Thermoproteus sp. IC-061 16 S rRNA gene (rDNA) intron was characterized with respect to its structure, catalytic properties and thermostability. It was found that I-Tsp061I is a HEase isoschizomer of the previously described I-PogI and exhibits the highest thermostability among the known LAGLIDADG-type HEases. Determination of the crystal structure of I-Tsp061I at 2.1 A resolution using the multiple isomorphous replacement and anomalous scattering method revealed that the overall fold is similar to that of other known LAGLIDADG-type HEases, despite little sequence similarity between I-Tsp061I and those HEases. However, I-Tsp061I contains important cross-domain polar networks, unlike its mesophilic counterparts. Notably, the polar network Tyr6-Asp104-His180-107O-HOH12-104O-Asn177 exists across the two packed alpha-helices containing both the LAGLIDADG catalytic motif and the GxxxG hydrophobic helix bundle motif. Another important structural feature is the salt-bridge network Asp29-Arg31-Glu182 across N and C-terminal domain interface, which appears to contribute to the stability of the domain/domain packing. On the basis of these structural analyses and extensive mutational studies, we conclude that such cross-domain polar networks play key roles in stabilizing the catalytic center and domain packing, and underlie the hyperthermostability of I-Tsp061I.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2006.09.066DOI Listing

Publication Analysis

Top Keywords

cross-domain polar
12
polar networks
12
homing endonuclease
8
laglidadg-type heases
8
i-tsp061i
7
structure hyperthermophilic
4
hyperthermophilic archaeal
4
archaeal homing
4
endonuclease i-tsp061i
4
i-tsp061i contribution
4

Similar Publications

Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain.

ACS Chem Neurosci

December 2024

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.

The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces.

View Article and Find Full Text PDF

Polar contrast attention and skip cross-channel aggregation for efficient learning in U-Net.

Comput Biol Med

October 2024

Department of Computing Science, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom. Electronic address:

The performance of existing lesion semantic segmentation models has shown a steady improvement with the introduction of mechanisms like attention, skip connections, and deep supervision. However, these advancements often come at the expense of computational requirements, necessitating powerful graphics processing units with substantial video memory. Consequently, certain models may exhibit poor or non-existent performance on more affordable edge devices, such as smartphones and other point-of-care devices.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a universal phenomenon the origins of which lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. To study these phenomena, it is crucial to examine the origins of AMR in pristine environments, i.e.

View Article and Find Full Text PDF

Research Background, the intelligent polymorphic system of heavy core clustering fitting iterative programming is constructed by using the edge lens of dual core heavy core. The tracking system of heavy core TANH equilibrium array is used to obtain the abnormal data range. The energy regular fluctuation of the edge lens with dual core and heavy core is used to obtain high-definition images.

View Article and Find Full Text PDF

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!