Retinal progenitor cells are believed to display altered proliferation and differentiation during retinal development, suggesting that retinal progenitor cell populations are not homogeneous. However, the composition of progenitor cell populations is not known, due in part to the lack of known surface markers identifying distinct stages of retinal progenitor cells. We found a dramatic change in the expression profile of the cell surface antigens c-kit and stage-specific embryonic antigen-1 (SSEA-1) in retinal progenitor cells during development. While SSEA-1 was expressed early in development, c-kit expression peaked in late stage progenitor cells. The identification of these developmental markers enabled us to characterize distinct sub-populations of retinal progenitor cells. Progenitor cell subpopulations expressing either SSEA-1, c-kit, or both showed different proliferation and differentiation abilities. Although SSEA-1-positive cells were augmented by beta-catenin signaling, c-kit-positive cells were positively regulated by Notch signaling. Taken together, our data suggest that c-kit and SSEA-1 can be used to spatiotemporally differentiate retinal progenitor populations that have intrinsically distinct characteristics. Prolonged expression of c-kit by a retrovirus resulted in the promotion of proliferation and the appearance of nestin-positive cells in the presence of the c-kit ligand, stem cell factor (SCF). This suggests a role for c-kit, Notch, and the beta-catenin signaling network in retinal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2006.09.027 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China. Electronic address:
The death of retinal ganglion cells (RGCs) is a key factor in the pathophysiology of all forms of glaucoma. RGC culture serves as a simple system for establishing and testing candidate therapies. This study aimed to explore the differentiation of primary retinal progenitor cells (RPCs) into RGC-like cells induced by low-dose cytarabine (Ara-C).
View Article and Find Full Text PDFNeurobiol Dis
February 2025
Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy. Electronic address:
Biallelic mutations in the SACS gene, encoding sacsin, cause early-onset autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), a neurodegenerative disease also characterized by unique and poorly understood retinal abnormalities. While two murine models replicate the phenotypic and neuronal features observed in patients, no retinal phenotype has been described so far. In a zebrafish knock-out strain that faithfully mirrors the main aspects of ARSACS, we observed impaired visual function due to photoreceptor degeneration, likely caused by cell cycle defects in progenitor cells.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).
View Article and Find Full Text PDFCell Biochem Funct
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
N-methylenadenosine (mA) modification, the most abundant epitranscriptomic modification in eukaryotic mRNAs, has been shown to play crucial roles in regulating various aspects of mRNA metabolism and functions. In this study, we applied the Cre-Loxp conditional knockout system to investigate the role of the core components of the mA methyltransferase complex, METTL14 and METTL3, in retinal development. Our results showed that the double absence of Mettl14 and Mettl3 caused structural disturbance in the retina and prolonged the proliferation activity of retinal progenitor cells.
View Article and Find Full Text PDFExp Cell Res
January 2025
Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!