Tim-3 is a member of the TIM family of proteins (T-cell immunoglobulin mucin) involved in the regulation of CD4+ T-cells. Tim-3 is a T(H)1-specific type 1 membrane protein and regulates T(H)1 proliferation and the development of tolerance. Binding of galectin-9 to the extracellular domain of Tim-3 results in apoptosis of T(H)1 cells, but the intracellular pathways involved in the regulatory function of Tim-3 are unknown. Unlike Tim-1, which is expressed in renal epithelia and cancer, Tim-3 has not been described in cells other than neuronal or T-cells. Using RT-PCR we demonstrate that Tim-3 is expressed in malignant and non-malignant epithelial tissues. We have cloned Tim-3 from an immortalized liver cell carcinoma line and identified a highly conserved tyrosine in the intracellular tail of Tim-3 (Y265). We demonstrate that Y265 is specifically phosphorylated in vivo by the interleukin inducible T cell kinase (ITK), a kinase which is located in close proximity of the TIM genes on the allergy susceptibility locus 5q33.3. Stimulation of Tim-3 by its ligand galectin-9 results in increased phosphorylation of Y265, suggesting that this tyrosine residue plays an important role in downstream signalling events regulating T-cell fate. Given the role of TIM proteins in autoimmunity and cancer, the conserved SH2 binding domain surrounding Y265 could represent a possible target site for pharmacological intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.10.079 | DOI Listing |
Sci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFCancer Sci
December 2024
Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
In this study, we investigated the measurable residual leukemic stem cell (MR-LSC) population after allogeneic stem cell transplantation (allo-SCT) for high-risk acute myeloid leukemia (AML), utilizing T-cell immunoglobulin mucin-3 (TIM-3) expression as a functional marker of AML leukemic stem cells (LSCs). Analysis of the CD34CD38 fraction of bone marrow cells immediately after achievement of engraftment revealed the presence of both TIM-3LSCs and TIM-3 donor hematopoietic stem cells (HSCs) at varying ratios. Genetic analysis confirmed that TIM-3 cells harbored patient-specific mutations identical to those found in AML clones, whereas TIM-3 cells did not, indicating that TIM-3CD34CD38 cells represent residual AML LSCs.
View Article and Find Full Text PDFOncoimmunology
December 2025
Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany.
Immune checkpoint blockers have substantially improved prognosis of melanoma patients, nevertheless, resistance remains a significant problem. Here, intrinsic and extrinsic factors in the tumor microenvironment are discussed, including the expression of alternative immune checkpoints such as lymphocyte activation gene 3 (LAG-3) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3). While most studies focus on immune cell expression of these proteins, we investigated their melanoma cell intrinsic expression by immunohistochemistry in melanoma metastases of 60 patients treated with anti-programmed cell death protein 1 (PD-1) and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) therapy, and correlated it with the expression of potential ligands, RNA sequencing data and clinical outcome.
View Article and Find Full Text PDFOral Oncol
December 2024
Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Head and neck squamous cell carcinoma (HNSCC) poses a considerable challenge due to its high incidence and mortality rates. Immunotherapy targeting PD-(L)1 emerges as a promising approach for HNSCC, as it has the potential to trigger a broad and long-lasting anti-tumor response. Nevertheless, the effectiveness of immunotherapy encounters hurdles, and only a small proportion of patients benefit, with many eventually experiencing relapse.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Sepsis is a major medical problem which causes millions of deaths worldwide every year. The host immune response in sepsis is characterized by acute inflammation and a simultaneous state of immunosuppression. In the later stage of sepsis, immunosuppression is a crucial factor that increases the susceptibility of septic patients to secondary infection and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!