Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The extracellular matrix (ECM) environment in connective tissues provides fibroblasts with a structural scaffold and modulates cell shape, but it also profoundly influences the fibroblast phenotype. Here we studied fibroblasts cultured in a three-dimensional network of native collagen, which was either mechanically stressed or relaxed. Mechanical load induces fibroblasts that synthesize abundant ECM and a characteristic array of cytokines/chemokines. This phenotype is reminiscent of late granulation tissue or scleroderma fibroblasts. By contrast, relaxed fibroblasts are characterized by induction of proteases and a subset of cytokines that does not overlap with that of mechanically stimulated cells. Thus, the biochemical composition and physical nature of the ECM exert powerful control over the phenotypes of fibroblasts, ranging from "synthetic" to "inflammatory" phenotypes. Interactions between fibroblasts and collagen fibrils are mostly mediated by a subset of beta 1 integrin receptors. Fibroblasts utilize alpha 1 beta 1, alpha 2 beta 1, and alpha 11 beta 1 integrins for establishing collagen contacts and transducing signals. In vitro assays and mouse genetics have demonstrated individual tasks served by each receptor, but also functional redundancy. Unraveling the integrated functions of fibroblasts, collagen integrin receptors, collagen fibrils, and mechanical tension will be important to understand the molecular mechanisms underlying tissue repair and fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jidsymp.5650003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!