The beta 2 integrin family (CD11/CD18) of leukocyte adhesion molecules plays a key role in inflammation. Absence of the common chain (CD18) leads to leukocyte adhesion deficiency-1 (LAD1) in humans. We here summarize data of two genetically defined mice models of beta 2 integrin deficiency, one with a CD18 null mutation (CD18-/-), and the other one with a hypomorphic CD18 mutation (CD18hypo). Firstly, we focus on the underlying mechanism of a severely impaired wound healing in CD18-/- mice, outlining a scenario in which a defective extravasation and phagocytosis of CD18-/- neutrophils results in delayed myofibroblast-dependent wound contraction owing to a deficient transforming growth factor-beta 1 release. Based on this, we have identified a potential therapy that fully rescued the impaired wound healing in CD18-/- mice. Secondly, we expand on a CD18hyp0 PL/J mouse model closely resembling human psoriasis. Apart from common clinical and pathophysiological features, this psoriasiform dermatitis also depends on the presence of activated CD4+ T cells. We here recapitulate the influence of a reduced CD18 gene expression on T-cell function, also with regard to CD18 gene-dose effects, and its contribution to the pathogenesis of this disease. Taken together, these unique features make this model a valuable tool for investigations into the pathogenesis of human psoriasis--including its polygenic base--and future preclinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jidsymp.5650006 | DOI Listing |
Mol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFPharmaceutics
December 2024
Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
: Alpha radionuclide therapy has emerged as a promising novel strategy for cancer treatment; however, the therapeutic potential of Ac-labeled peptides in pancreatic cancer remains uninvestigated. : In the cytotoxicity study, tumor cells were incubated with Ac-DOTA-RGD. DNA damage responses (γH2AX and 53BP1) were detected using flowcytometry or immunohistochemistry analysis.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey.
HER2-positive breast cancer has an aggressive tumour progression among breast cancers characterized by the overexpression of HER2. Trastuzumab is an FDA-approved drug and has significantly improved outcomes for patients; however, drug resistance remains a major challenge. Tumour heterogeneity, describing genetic, epigenetic, and phenotypic differences within and between tumours, complicates tumour treatment and contributes to drug resistance.
View Article and Find Full Text PDFSci Rep
January 2025
College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju-si, 52828, Gyeongnam, Republic of Korea.
Epithelial-mesenchymal transition (EMT) is designated as one of the prime causes of chemoresistance in many cancers. In our previous study we established that cisplatin resistance in ovarian cancer (OC) is associated with EMT using sensitive OV90 cells and its resistant counterparts OV90CisR1 and OV90CisR2. In this study, we revealed through RNAseq analysis that ITGA1 can play essential part in EMT mediated cisplatin resistance in OC.
View Article and Find Full Text PDFNat Commun
January 2025
Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!