Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The two major astaxanthin-producing microorganisms Phaffia rhodozyma and Haematococcus pluvialis exhibited elevated astaxanthin yields under the mixed culture regime, and the changes in flux distribution were investigated by means of metabolic flux analysis (MFA). In the mixed culture of the two strains, the carbon flux towards astaxanthin formation in P. rhodozyma increased by 20%, which may be due to the enriched oxygen evolved through the photosynthesis of H. pluvialis. On the other hand, the uptake of pyruvate and CO(2) excreted by P. rhodozyma also facilitated astaxanthin synthesis in H. pluvialis, which reduced 33% of the carbon flux exported from Calvin cycle to the catabolic pathway, and in turn raised the carbon flux to glyceraldehyde-3-phosphate by 25%. As a result, the carbon flux diverted to astaxanthin synthesis increased 2.8-fold in comparison with that in the pure culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.200600060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!