Protein phosphorylation is an important mechanism that controls many cellular activities. Phosphorylation of a given protein is precisely controlled by two opposing biochemical reactions catalyzed by protein kinases and protein phosphatases. How these two opposing processes are coordinated to achieve regulation of protein phosphorylation is unresolved. We have developed a novel experimental approach to directly study protein dephosphorylation in cells. We determined the kinetics of dephosphorylation of insulin receptor substrate-1/2, Akt, and ERK1/2, phosphoproteins involved in insulin receptor signaling. We found that insulin-induced ERK1/2 and Akt kinase activities were completely abolished 10 min after inhibition of the corresponding upstream kinases with PD98059 and LY294002, respectively. In parallel experiments, insulin-induced phosphorylation of Akt, ERK1/2, and insulin receptor substrate-1/2 was decreased and followed similar kinetics. Our findings suggest that these proteins are dephosphorylated by a default mechanism, presumably via constitutively active phosphatases. However, dephosphorylation of these proteins is overcome by activation of protein kinases following stimulation of the insulin receptor. We propose that, during acute insulin stimulation, the kinetics of protein phosphorylation is determined by the interplay between upstream kinase activity and dephosphorylation by default.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M605251200 | DOI Listing |
Plant Foods Hum Nutr
January 2025
College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFSci Rep
January 2025
Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.
Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206 M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes.
View Article and Find Full Text PDFJ Hepatol
January 2025
Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America. Electronic address:
Background & Aims: Lanifibranor is a pan-PPAR agonist that improves glucose/lipid metabolism and reverses steatohepatitis and fibrosis in adults with MASH. We tested its effect on insulin resistance at the level of different target tissues in relationship to change in intrahepatic triglyceride (IHTG) content.
Methods: This phase 2, single center, study randomized (1:1) 38 patients with T2D and MASLD to receive lanifibranor 800 mg or placebo for 24 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!