Nonrandom AP site distribution in highly proliferative cells.

FASEB J

Department of Pathology and Laboratory, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA.

Published: December 2006

AI Article Synopsis

  • Reactive oxygen species (ROS) contribute to oxidative DNA damage, which is associated with various age-related and chronic diseases.
  • The average DNA genome contains 70,000 to 100,000 apurinic/apyrimidinic (AP) sites, indicating a significant level of damage.
  • Research using electron microscopy revealed that AP sites are not evenly distributed in DNA fibers; rather, a small number of fibers held a large concentration of AP sites, suggesting certain genomic regions are more susceptible to ROS damage due to factors like chromatin structure.

Article Abstract

Reactive oxygen species (ROS) and the oxidative DNA damage they produce [e.g., 8-oxo-guanine and apurinic/apyrimidinic (AP) sites] have been linked to the pathogenesis of several age-related and chronic diseases. The basal number of AP sites measured in DNA by immuno-slot-blot analysis ranges from 70,000 to 100,000 per genome. We used electron microscopy to determine how AP sites were distributed in isolated DNA fibers from fresh calf thymus and HeLa cell cultures. We observed that AP sites were not equally distributed throughout all the fibers. A small percentage of the analyzed DNA fibers contained a disproportionate amount of the total AP sites in nonrandom groups of 10 to >30 closely spaced in a small region (e.g., 20 AP sites in a 6 kb length of DNA). This finding suggests that genomic sites may differ in their vulnerability to ROS damage, perhaps because of local chromatin structure. Nonrandom AP site formation also suggests that the detrimental effects of ROS in the development of disease may be related not simply to the total number of AP sites present but to how AP sites are distributed along a DNA fiber and, perhaps, to the genomic sites affected.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.06-6145fjeDOI Listing

Publication Analysis

Top Keywords

sites
9
nonrandom site
8
number sites
8
sites distributed
8
dna fibers
8
genomic sites
8
dna
6
site distribution
4
distribution highly
4
highly proliferative
4

Similar Publications

Acceptance, Safety, and Effect Sizes in Online Dialectical Behavior Therapy for Borderline Personality Disorder: Interventional Pilot Study.

JMIR Form Res

January 2025

Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Background: The potential of telehealth psychotherapy (ie, the online delivery of treatment via a video web-based platform) is gaining increased attention. However, there is skepticism about its acceptance, safety, and efficacy for patients with high emotional and behavioral dysregulation.

Objective: This study aims to provide initial effect size estimates of symptom change from pre- to post treatment, and the acceptance and safety of telehealth dialectical behavior therapy (DBT) for individuals diagnosed with borderline personality disorder (BPD).

View Article and Find Full Text PDF

Background Objectives: Temephos is being used regularly to control immature of vector borne diseases in various states in India.

Methods: World Health Organization method was used to evaluate larval susceptibility status of Aedes aegypti and Anopheles stephensi against temephos in Dehradun of Uttarakhand.

Results: The results of the study revealed that the larval mortality in different localities ranged from 67.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Purpose: Over the past 15 years, the landscape of early phase clinical trials (EPCTs) has undergone a remarkable expansion in both quantity and intricacy. The proliferation of sites, trials, sponsors, and contract research organizations has surged exponentially, marking a significant shift in research conduct. However, EPCT operations suffer from numerous inefficiencies, such as cumbersome start-up processes, which are particularly critical when drug safety and the recommended phase II dose need to be established in a timely manner.

View Article and Find Full Text PDF

"Suspended" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose.

J Am Chem Soc

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!