Corticotropin-releasing hormone (CRH)-containing neurons in the hypothalamic paraventricular nucleus (PVN) are known to be activated during physical or psychological stress, and play an important role as one of the central activators of integrated stress response. Physical exercise has also been suggested as one of the stressors activating CRH neurons in the PVN. Spontaneous wheel running (SWR) has recently been reported to result in improved mental health or mood, unlike treadmill running that commonly forces the animal to run. Thus, forced running may strongly induce an activation of CRH neurons compared with spontaneous running, and spontaneous running may not represent a strong stressor. However, whether the effects of spontaneous running on activation of CRH neurons in the PVN differ from those of forced running is unknown. The present study examined the activity of CRH neurons in 1-h forced wheel running (FWR) and SWR using c-Fos/CRH immunohistochemistry in male Wistar rats. No significant differences in 1-h running distance were observed between FWR and SWR, indicating that amount of work was almost equal between exercises. Number of double-labeled neurons for c-Fos and CRH in the PVN was markedly higher in FWR than in SWR. In addition, no significant differences in Fos expression in the LC, which is related to various stress responses, were found between FWR and SWR. These results indicate that FWR strongly activates CRH neurons in the PVN compared with SWR, suggesting that spontaneous running is not an intense stressor even though running distance does not differ significantly from forced running.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2006.09.027DOI Listing

Publication Analysis

Top Keywords

crh neurons
20
forced running
16
spontaneous running
16
fwr swr
16
running
13
neurons pvn
12
effects spontaneous
8
running activation
8
corticotropin-releasing hormone
8
neurons
8

Similar Publications

Cortical interneurons generated from ganglionic eminence via a long-distance journey of tangential migration display evident cellular and molecular differences across brain regions, which seeds the heterogeneous cortical circuitry in primates. However, whether such regional specifications in interneurons are intrinsically encoded or gained through interactions with the local milieu remains elusive. Here, we recruit 685,692 interneurons from cerebral cortex and subcortex including ganglionic eminence within the developing human and macaque species.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chai Shao Jie Yu Granules (CSJY) is a renowned and time-honored formula employed in clinical practice for the management of various conditions, notably depression. Depression, a prevalent psychiatric disorder, poses challenges with limited effective treatment options. Traditional herbal medicines have garnered increasing attention in the realm of combating depression, being perceived as safer alternatives to pharmacotherapy.

View Article and Find Full Text PDF

Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats.

Biochem Biophys Res Commun

January 2025

Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:

Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.

View Article and Find Full Text PDF

Genes involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis, including the glucocorticoid receptor (GR), are linked to various stress-related psychopathologies including bipolar disorder as well as other mood and trauma-related disorders. The protein product of the cell cycle gene, is a GR interaction partner in peripheral cells. However, the precise roles of SKA2 in stress and GR signaling in the brain, specifically in nonreplicating postmitotic neurons, and its involvement in HPA axis regulation remain unclear.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!