Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The inward rectifier potassium channel, Kir2.1, contributes to the I(K1) current in cardiac myocytes and is closely associated with atrial fibrillation. Strong evidences have shown that atrial dilatation or stretch may result in atrial fibrillation. However, the role of Kir2.1 channels in the stretch-mediated atrial fibrillation is not clear. In this study, we constructed the recombinant plasmid of KCNJ2 that encodes the Kir2.1 channel and expressed it in CHO-K1 cells. We recorded I(K1) currents using the whole-cell patch clamping technique. Our data showed that I(K1) currents were significantly larger under stretch in the hypotonic solution than under non-stretch in the iso-osmotic solution, and the activation kinetics of the Kir2.1 channel were changed markedly by stretch as well. Thus, atrial stretch in human heart might result in excessive I(K1) currents, which is likely to increase the resting membrane potential and decrease the effective refractory period, to initiate and/or maintain atrial fibrillation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.10.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!