Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Although baker's yeast is a primary model organism for research on eukaryotic ribosome assembly and nucleoli, the list of its proteins that are functionally associated with nucleoli or ribosomes is still incomplete. We trained a naïve Bayesian classifier to predict novel proteins that are associated with yeast nucleoli or ribosomes based on parts lists of nucleoli in model organisms and large-scale protein interaction data sets. Phylogenetic profiling and gene expression analysis were carried out to shed light on evolutionary and regulatory aspects of nucleoli and ribosome assembly.
Results: We predict that, in addition to 439 known proteins, a further 62 yeast proteins are associated with components of the nucleolus or the ribosome. The complete set comprises a large core of archaeal-type proteins, several bacterial-type proteins, but mostly eukaryote-specific inventions. Expression of nucleolar and ribosomal genes tends to be strongly co-regulated compared to other yeast genes.
Conclusion: The number of proteins associated with nucleolar or ribosomal components in yeast is at least 14% higher than known before. The nucleolus probably evolved from an archaeal-type ribosome maturation machinery by recruitment of several bacterial-type and mostly eukaryote-specific factors. Not only expression of ribosomal protein genes, but also expression of genes encoding the 90S processosome, are strongly co-regulated and both regulatory programs are distinct from each other.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794573 | PMC |
http://dx.doi.org/10.1186/gb-2006-7-10-r98 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!