Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An enzyme-linked immunosorbent assay (ELISA) was developed to study thermal denaturation of tropomyosin (Tm) using the time-temperature requirements for cooked beef. The ELISA employed a monoclonal antibody (MAb 2C9) raised against bovine Tm for quantifying residual Tm in muscle extracts. The specificity of MAb 2C9 to bovine Tm was demonstrated by Western blot and the analytical validity of ELISA was confirmed by dot blot. Thermal denaturation of Tm, in the temperature range between 54.4 and 70.0 degrees C, showed first-order dependency. Kinetic parameters of Tm denaturation were derived from isothermal heating of beef muscle extract at 54.4, 57.2, 60.0, and 62.8 degrees C. Temperature dependency of the rate constant (k) was demonstrated by Arrhenius plot; the activation energy (E(a)) of Tm denaturation was determined to be 484 kJ x mol(-1). A mathematic model describing the impact of the heating time-temperature on Tm denaturation was developed. Predicted Tm from the integrated time-temperature model agreed closely with the measured Tm in dynamically heat-processed beef samples. Percent errors between the measured and the predicted values ranged from -5.1 to 5.3%. The kinetic model provides an accurate and reproducible prediction of the impact of actual heating time-temperature on residual Tm in cooked beef. The MAb-based ELISA and kinetic model developed in this study have the potential to be adapted by the meat industry as a quality control tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-69.10.2447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!