Computer mediated communication: avoiding conflict using E-mail.

Pa Nurse

School of Nursing and Health Sciences, La Salle University, USA.

Published: September 2006

Download full-text PDF

Source

Publication Analysis

Top Keywords

computer mediated
4
mediated communication
4
communication avoiding
4
avoiding conflict
4
conflict e-mail
4
computer
1
communication
1
avoiding
1
conflict
1
e-mail
1

Similar Publications

Dynamic control of DNA circuit functionality is essential for constructing chemical reaction networks (CRNs) that implement complex functions. The triplex has been utilized for dynamically regulating the diverse functionalities of DNA circuits due to its distinctive pH responsiveness. However, it is challenging for triplexes to independently regulate the functionality of DNA circuits, as various triplexes were often required for DNA circuits to function in complex environments, which adds complexity to the design and control of dynamic circuits.

View Article and Find Full Text PDF

Hyponatremia is associated with malignant brain edema after mechanical thrombectomy in acute ischemic stroke.

BMC Neurol

January 2025

Neurological Disorder Center, Department of Cerebrovascular Disease, Suining Central Hospital, Sichuan, 629000, China.

Background: Hyponatremia (< 135 mmol/L) is the most common electrolyte disturbance in patients with stroke. However, few studies have reported the relationship between hyponatremia at admission and outcomes in patients with acute ischemic stroke (AIS) treated with mechanical thrombectomy (MT). This study is aimed to explore the association between hyponatremia and clinical outcomes following MT.

View Article and Find Full Text PDF

Water is a critical component in polyelectrolyte anion exchange membranes (AEMs). It plays a central role in ion transport in electrochemical systems. Gaining a better understanding of molecular transport and conductivity in AEMs has been challenged by the lack of a general methodology capable of capturing and connecting water dynamics, water structure, and ionic transport over time and length scales ranging from those associated with individual bond vibrations and molecular reorientations to those pertaining to macroscopic AEM performance.

View Article and Find Full Text PDF

Energizing Robust Sulfur/Lithium Electrochemistry via Nanoscale-Asymmetric-Size Synergism.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!