Sequence comparison of Hoxd-13 among vertebrates revealed the presence of taxon-specific polyalanine tracts in amniotes. To investigate their function at the organismal level, we replaced the wild-type Hoxd-13 gene with one lacking the 15-residue polyalanine tract by using homologous recombination. Sesamoid bone formation in knock-in mice was different from that in the wild type; this was observed not only in the homozygotes but also in the heterozygotes. The present study provides the first direct evidence that taxon-specific homopolymeric amino acid repeats are involved in phenotypic diversification at the organismal level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/msl161 | DOI Listing |
Mol Biol Evol
January 2007
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Sequence comparison of Hoxd-13 among vertebrates revealed the presence of taxon-specific polyalanine tracts in amniotes. To investigate their function at the organismal level, we replaced the wild-type Hoxd-13 gene with one lacking the 15-residue polyalanine tract by using homologous recombination. Sesamoid bone formation in knock-in mice was different from that in the wild type; this was observed not only in the homozygotes but also in the heterozygotes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!